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Modelling of Prior
• So far, we have discussed how to determine the likelihood 

p(x|C) (training)

• Now, it needs to discuss how to determine the prior p(C) 

• To determine posterior p(C|x) with the help of the theorem of 

Bayes, in a form of synthetic data sets by sampling from the 

joint distribution p(x,C) = p(x|C) ∙ p(C) → Generative Classifiers

• Possible origins of priors:

1) From experiments, e.g. in the case of sequential data: the 

prior for the classification at time t depends on the state at 

time t-1

2) "Uninformed" / subjective: from prior knowledge (... from 

whichever source)
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Priors from Experiments

• Requirement: the prior distribution should have the same 

algebraic form as the likelihood function   “Conjugate Prior“

• Example: Estimation of the parameter m of a Bernoulli 

distribution with p(x) = mx · (1 – m)(1-x)

– N experiments

• in n+ cases the result is “1“

• in n- cases the result is “0“

• n+ + n- = N

 Maximum Likelihood estimation: m = n+ / N

Can lead to overfitting   prior for m? 
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Priors from Experiments

• Bayesian estimation of m: p(m | n+)  p(n+ | m) · p(m) 

• p(n+ | m) follows a binomial distribution :

• Priori distribution for m? 

– Conjugate prior: Beta distribution with hyperparameters a, b: 

• Resulting posterior:
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Priors from Experiments

• Resulting posterior:

• Interpretation: 

a -1 ... The number of trials with x = 1 from “earlier 

experiments“, which formed the basis of the prior

b -1 ... The number of trials with x = 0 from “earlier 

experiments“, which formed the basis of the prior

• Simplifies the processing of sequential data
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Priors from Experiments

• Conjugate priors for other distributions :
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Uninformed Priors

• A priori probabilities from minimal additional information

• Subjective priors (without measurements / experiments)

Principle of Maximum Entropy (ME): 

• Prior knowledge concerning the value range or moments of 

the distribution can be used to formulate of constraints for pME

     2argmax logME p

x

p p x p x dx
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Uninformed Priors

• Example for ME-Priors:

– Known value range with a ≤ x ≤ b: 

 Uniform  distribution in the interval (a,b)

 also applies for (-∞, +∞)  in this case: ML-classification!

– Known expected value m, x ≥ 0:

 Exponential distribution:

– Known expected value m, known variance s2: 

 Normal distribution N(m,s2)
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Bayesian Classification: Discussion

• Bayesian classification (and extensions) has many applications

• There are many variants depending on the models used for the 

individual components

• Bayesian classification delivers optimal results if

– The assumptions about the likelihood function and the 

priors are correct

– The training data are representative for the classes 

– There are enough training data to estimate the parameters 

of the models reliably

• Problems occur when one of these assumptions is not justified
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Bayesian Classification: Discussion

• Examples of problems:

– Assumption: the assumptions about the likelihood function 

and the prioris are correct

 Possible problem: unknown / wrong number of clusters for one or more 

classes in feature space

 Assumption: The training data are representative

 Possible problem: training data only for objects in the sun, 

not for objects in the shadow

– Assumption: There are enough training data 

 Posible problem: not enough training data 

 reliable determination of the parameters may be impossible
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Bayesian Classification: Discussion

• There is no mechanism to take into account uncertainties in the  

probabilities

 If the requirements are not fulfilled, Bayesisan classification 

may yield suboptimal results

• How to describe the quality of the results?

• How to determine the priors? 

• Modelling the distribution of the data may require more 

parameters and, therefore, more training data than direct models 

of the posterior distribution

 If the requirements are not fulfilled, Bayesisan classification 

may yield suboptimal results
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