Modelling of Priors

For Bayesian Classification

Contents

- Modelling of the Prior
- Priors from experiments
- Uninformed Priors
- Bayesian Classification: Discussion

Modelling of Prior

- So far, we have discussed how to determine the likelihood p(x|C) (training)
- Now, it needs to discuss how to determine the prior p(C)
- To determine posterior $p(C|\mathbf{x})$ with the help of the theorem of Bayes, in a form of synthetic data sets by sampling from the joint distribution $p(\mathbf{x},C) = p(\mathbf{x}|C) \cdot p(C) \rightarrow \text{Generative Classifiers}$
- Possible origins of priors:
 - 1) From experiments, e.g. in the case of sequential data: the prior for the classification at time *t* depends on the state at time *t*-1
 - 2) "Uninformed" / subjective: from prior knowledge (... from whichever source)

- Requirement: the prior distribution should have the same algebraic form as the likelihood function → "Conjugate Prior"
- Example: Estimation of the parameter μ of a Bernoulli distribution with $p(x) = \mu^x \cdot (1 \mu)^{(1-x)}$
 - N experiments
 - in *n*₊ cases the result is "1"
 - in *n*₋ cases the result is "0"
 - $n_{+} + n_{-} = N$
 - → Maximum Likelihood estimation: $\mu = n_+ / N$ Can lead to overfitting → prior for μ ?

- Bayesian estimation of μ : $p(\mu \mid n_+) \propto p(n_+ \mid \mu) \cdot p(\mu)$
- $p(n_+ \mid \mu)$ follows a binomial distribution :

$$p(n_{+} \mid \mu) = \frac{N!}{n_{+}! \cdot (N - n_{+})!} \mu^{n_{+}} \cdot (1 - \mu)^{N - n_{+}}$$

- Priori distribution for μ ?
 - Conjugate prior: Beta distribution with hyperparameters a, b:

$$p(\mu) = p(\mu \mid a, b) = \frac{\Gamma(a + b)}{\Gamma(a) \cdot \Gamma(b)} \cdot \mu^{a-1} \cdot (1 - \mu)^{b-1}$$

• Resulting posterior:

$$p(\mu \mid n_{\mu}) \propto p(n_{\mu} \mid \mu) \cdot p(\mu) \propto \mu^{n_{\mu}+a-1} \cdot (1-\mu)^{N-n_{\mu}+b-1}$$

• Resulting posterior:

 $p(\mu \mid n_{\scriptscriptstyle +}) \propto p(n_{\scriptscriptstyle +} \mid \mu) \cdot p(\mu) \propto \mu^{n_{\scriptscriptstyle +}+a-1} \cdot (1-\mu)^{N-n_{\scriptscriptstyle +}+b-1}$

• Interpretation:

> a - 1 ... The number of trials with x = 1 from "earlier experiments", which formed the basis of the prior

- > b 1 ... The number of trials with x = 0 from "earlier experiments", which formed the basis of the prior
- Simplifies the processing of sequential data

• Conjugate priors for other distributions :

Likelihood	Parameter	Conjugate prior	Hyper- parameter	Posterior parameter
Binomial	μ	Beta	a,b	a+n ₊ , b+(N-n ₊)
Multinomial	$\mu (\Sigma \mu_{\rm i} = 1)$	Dirichlet	а	a _i +n _{i+}
Normal, σ known	μ	Normal	μ_0, σ_0^2	$\frac{\frac{\mu_0}{\sigma_0^2} + \sum x_i}{\frac{1}{\sigma_0^2} + \frac{1}{\sigma^2}}$
Normal, μ known	<i>w</i> (Precision)	Gamma	α, β	$\alpha + n/2,$ $\beta + 1/2 \Sigma (x_i - \mu)^2$

Uninformed Priors

- A priori probabilities from minimal additional information
- Subjective priors (without measurements / experiments)

→ Principle of Maximum Entropy (ME):

$$p_{ME} = \operatorname{argmax}_{p} \int_{x} -p(x) \log_{2} p(x) dx$$

• Prior knowledge concerning the value range or moments of the distribution can be used to formulate of constraints for p_{ME}

Uninformed Priors

• Example for ME-Priors:

- Known value range with $a \le x \le b$: $\int_{x=a}^{b} p(x) dx = 1$

 \rightarrow Uniform distribution in the interval (*a*,*b*)

 \rightarrow also applies for (- ∞ , + ∞) \rightarrow in this case: ML-classification!

- Known expected value *m*, $x \ge 0$: $\int x \cdot p(x) dx = m$

→ Exponential distribution: $p(x) = \frac{1}{m} \cdot e^{-\frac{x}{m}}$

- Known expected value m, known variance s^2 :

$$\int_{x} x \cdot p(x) dx = m \qquad \int_{x} (x - m)^{2} \cdot p(x) dx = s^{2}$$

 \rightarrow Normal distribution $N(m, s^2)$

Bayesian Classification: Discussion

- Bayesian classification (and extensions) has many applications
- There are many variants depending on the models used for the individual components
- Bayesian classification delivers optimal results if
 - The assumptions about the likelihood function and the priors are correct
 - The training data are representative for the classes
 - There are enough training data to estimate the parameters of the models reliably
- Problems occur when one of these assumptions is not justified

Bayesian Classification: Discussion

- Examples of problems:
 - Assumption: the assumptions about the likelihood function and the prioris are correct
 - → Possible problem: unknown / wrong number of clusters for one or more classes in feature space
 - Assumption: The training data are representative
 - → Possible problem: training data only for objects in the sun, not for objects in the shadow
 - Assumption: There are enough training data
 - → Posible problem: not enough training data

 \rightarrow reliable determination of the parameters may be impossible

Bayesian Classification: Discussion

- There is no mechanism to take into account uncertainties in the probabilities
- If the requirements are not fulfilled, Bayesisan classification may yield suboptimal results
- How to describe the quality of the results?
- How to determine the priors?
- Modelling the distribution of the data may require more parameters and, therefore, more training data than direct models of the posterior distribution
- If the requirements are not fulfilled, Bayesisan classification may yield suboptimal results

