Histograms

As one of the non-parametric techniques
In Bayesian Classification
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Theorem of Bayes and Image Analysis

The task of image analysis is to get an explicit description of
objects in the image

This requires to detect objects in the first place

Therefore, knowledge about the appearance of objects in the
Image Is used

According to the way the knowledge is represented, there are:
— model-based methods for image analysis

— statistical methods for image analysis (discussed here)
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Theorem of Bayes and Statistical properties

Where does the idea of statistical methods lead us to:

* Objects are not primarily described by object-models, but by
statistical properties of the sensor data in relation to the objects

 We need a model of statistic properties in order to recognize
objects, this process can be treated as classification

* Observed features can be treated as functions of the object
type / class label

« These functions can be represented as probability densities
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Theorem of Bayes

Recapitulation of the Theorem of Bayes:

* For the joint distribution p(x, C), the product rule applies:
p(x,C) =p(C | x) - p(x)

» Likewise: p(C, x) =p(x | C) - p(C)

* Due to p(x, C) = p(C, x):
p(C | x) - p(x) =px|C) - p(C)

* Therefore: Theorem of Bayes:

o(Cx)=PX1C)P(C) _p(x.C)

p(x) p(x)
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Theorem of Bayes: Interpretation

C can be treated as object type or class label,
X Is the observed feature

0(C | x) Is posterior probability, a conditional probability for the
class label C given the observation x

o(x | C) is likelihood, the conditional probability to observe a
feature given a class

n(C) corresponds to prior for the occurrence of class label C

n(x) Is probability of the data, the marginal distribution of x,
enables us to interpret p(C | X) as a probability

P(C, Xx) Is joint distribution
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Theorem of Bayes for classification

* Maximum a posteriori (MAP) criterion: class label C is
determined so that the conditional probability p(C | x) for the
class label C given the observed data x is maximized

« Given:
— Models for the likelihoods p(x | C = LX) of all classes Lk
— Priori probabilities p(C = LK) of all classes Lk

— A feature vector x to be classified

« Wanted:

— class C,,,, of x according to the MAP criterion
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Bayesian Classification

» Posterior probability needs to be modeled but it is difficult to be
modelled directly

* Instead it can be modelled indirectly using inverse reasoning,
which means to derive information about the cause (the object

type) from the effect (the observed features)
- Bayesian Classification
 MAP can also be applied without knowing p(x), since
p(C [ x) < p(x | C) - p(C)
implies that max(p(C | x)) = max(p(x | C) - p(C))
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Bayesian Classification
* Procedure:

1) For all classes LX: calculate p(x, C=L¥) = p(x|C=LkK) - p(C=LkK)
2) Calculate p(x Zp(x |IC=L")-p(C=L¥)
3) For all classes Lk: calculate p(C=L¥| x) = p(x, C=LX) / p(x)

4) Cqp is the label of L for which p(C=L¥| x) is a maximum

* Next step:

— model p(x | C) directly from the training data:
Histograms, as an example of non-parametric method
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Histograms: 1-D Case

. - K
» For the case of discrete variables:  p(x=g|C=L)= N—gk
k

K41 Number of pixels in the training area of class L* and grey value g;
N,.: Number of pixels in the training area of class L*

Practically implemented with lookup tables!

Np- A

» For the case of continuous variables: p(x =g | C = L¥) =

A: Grid width used for discretization e.g. determined from cross-validation.

too small value leads to noisy approximation,
too large leads to strong smoothing!
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Histograms: 2-D Case

* In case of 2 dimensional discrete variables (assuming A; = A,):

9,9,k
2
N-A

— no. of pixels with class L* with grey value combination (g., g,)

p(xlzgl’XZ =0, |IC :Lk):

no. of pixels with class L times grid size a2 gAZ X training sample (colour = class)
X % X x x

m_ x’:‘x:"xxx %

x x| % %

* Image primitives represented as 2-D features o 1% X 5| * Xy |

- When g4is fixed, there are 4 different options for g,. || %X % [X [X[% *
» Also 4 different options, when g, is fixed. X % % x" xx x
» In the end, 16 likelihoods need to be calculated IR " X
for this 2-D feature space and grid size of 0.5. &

05 v 1.0 1.5 ’gf
p(1.0>g,,205[C=%)=2/(10+0.59) = 0.8
p(1.0>g,,20.5|C=%)=1/(20+0.59 =0.2
p(10>g,,205|C=%)=2/(20+0.57 = 0.4
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Histograms: 2-D Case

* In general QP probabilities need to be determined, when we
have D dimensional features with Q possible values.

— Hardly possible for D > 2!
— ,Curse of dimensionality”

— ,Hughes phenomenon” [Hughes, 1968 (!)]:
Beyond a certain point, the classification accuracy is
reduced by using additional features
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Histograms: 2-D Case

e Can the problem be simplified by determination of the
probabilities for each feature independently?

IR [ R R R L R R (X, X5, C) = p(Xy, X, | C) - p(C)

- Generally not possible, but..

 If we assume the two features x,, x, to be conditionally
iIndependent, we can factorize the likelihood p(x;, X, | C)

to p(Xy, X, | C) =p(X; | C) - p(X, | C)

« By definition, the features x; and x, are conditionally
iIndependent if p(x, | X,, C) does not depend on x,
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Histograms: 2-D Case

"conditionally independent” thus means that x; and x, are
statistically independent if C is known. It does not mean that x,
and x, are statistically independent in the general meaning of
the word.

We can extend it, if the features of a multi-dimensional feature
vector x are conditionally independent, the likelihood can be
factorised: p(x | C) = p(xy | C) - p(X; | C) - - p(Xp | C)

Consequence: the likelihood can be determined from the
marginal distributions p(x; | C)

- Q - D instead of QP parameters!
This approach is called the ,Naive Bayes Model”
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Example of Impact of the Naive Bayes Model

 Aerial image with training area for “vegetation® (V)
(87 x 85 = 7395 pixels)

Assuming conditional

- independence:
Xo= G Xo= G

AN
AN

1 /N2 V
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p(X, | V)
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Example of Impact of the Naive Bayes Model

Aerial image with training area for “street” (S)

(49 x 102 = 4998 pixels) Assuming conditional
Independence:
X,= G Xo= G

P(Xy, X5 | S) P(X.|S) - p(X2] S)

’ Xq= R - /
V, — . — \/ x,= R

P(X, | S) iIncorrect clusters!

' "~ > WRONG MODEL!

p(X2 | S)
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Discussion

« Bayesian classification uses ,inverse reasoning” since
likelihoods are often easier to model than posteriors

« Using histograms as a non-parametric technique to model the
likelihoods is a simple but often well working approach

« Histograms can also be used for multidimensional data, but for
more than two dimensions the amount of required training data
and computational resources drastically increases

—> Curse of Dimensionality
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Discussion

* One way to still use non-parametric techniques for
multidimensional data is the Naive Bayes Model

* Inthe Naive Bayes Model statistical dependencies between the
features are neglected, which is a strong simplification in
general! Maybe can be justified if the features are determined
from independent sensors

 However, wrongly taking the assumption of conditional
Independence can lead to a incorrect likelihood model
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