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Deep Learning

• Neural networks had gone out of fashion compared to procedures 

such as SVM or random forests:

– Networks with few layers: not adaptable enough

– Networks with many neurons: numerical problems in the 

determination of the parameters

• Neural networks have come back in the context of “Deep Learning“  

(“Google Brain“ project) 

– Networks with many layers (“deep" networks), many neurons

– Deep networks come in different flavours; here: 

Convolutional Neural Networks (CNN)
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Convolutional Neural Networks (CNN) I

• CNN [LeCun et al., 1998; Krizhevsky et al., 2012]:

– Layers maintain the topology of the image grid

– Weights are interpreted as coefficients of linear filter matrices

which, thus, can be learned

– In every layer, there is a combination of 

1) Convolution (related to the weights of the NN) 

2) Non-linearity (activation function) 

3) Pooling:  selection of the filter response in a local 

neighbourhood, reduction of resolution

4) Normalization (sometimes omitted)
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Convolutional Neural Networks (CNN) II

• CNN [LeCun et al., 1998; Krizhevsky et al., 2012]:

– The structure consisting of convolution, non-linearity, pooling 

and normalization are repeated multiple times  intermediate 

layers of the network

– This is typically followed by one or more fully connected layer(s) 

– The result of the last layer provides a high-level representation 

of a certain part of the image (i.e., a feature vector)

– This feature vector is presented to a simple linear classifier

– Interpretation: "Learning of appropriate features“ 
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Convolutional Neural Networks: Concept

• Classical approach in classification:

• CNN: Definition of features and classification are integrated
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CNN Architecture Example

• Example: recognizing hand-written digits [LeCun et al., 1998]

• C1,C3,C5: Convolutional Layer with 5×5 convolution kernels

• S2, S4: Pooling Layer  Subsampling by factor 4

• F6: Fully Connected Layer (with C5 and output)  3-MPL

• About 187,000 connections, but only about 14000 must be learnt 

 sharing of weights in the convolutional layers
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input image:

32 x 32

C1: 6@28x28
S2: 6@14x14

C3: 16@10x10 S4: 16@5x5

C5: 120

F6: 84

Output:
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Convolutional Neural Networks: Interpretation

• Input layer: each pixel of an image patch corresponds to a neuron

• Intermediate layers: correspond to extracted features at different 

levels of abstraction

– Low-level features

– Intermediate-level features

– High-level features: input for the final classifier

• Output layer: 

– One neuron per class

– Output of each neuron corresponds to the class score

– Softmax layer: results of output layer are passed through a 

softmax function
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Convolutional Layers I

• Each neuron of an intermediate layer is connected to n x n pixels

of its input layer

• The neurons are arranged in a spatial grid that preserves the 

structure of the image grid

• Neighbouring neurons in the intermediates layer share weights

 The weights of the connections can be interpreted as the the 

elements of an n x n convolutional filter

• The weigths are the parameters to be learned!
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Convolutional Layers II

• Each intermediate layer may consist of multiple grids having the 

same spatial arrangement 

– Multiple convolutions per layer

– Can be interpreted as a filter bank whose filters are learned

• Convolutions can be computed very fast on a GPU  
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Convolutional Layers III

• Each convolution results in an activation map (a slice through the 

block of neurons per layer)

• Activation maps preserve spatial structure!
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Convolutional Layers: Stride

• Sometimes, the resolution is reduced in a convolutional layer

• Stride s: distance between neighbouring positions of the filter matrix
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s=1: resolution remains constant

Filter matrix

s=2: resolution is reduced

Filter matrix
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Convolutional Layers: Zero Padding

• What happens at the image boundaries? 

– Reduce image size

– Zero padding: add rows / columns of zeroes  maintain size
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Convolutional Layer: Example

• Classification of aerial imagery [Paisitkriangkrai et al., 2016]: 
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filters of the first convolutional layer
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Nonlinearities I

• The nonlinearity f corresponds to the activation funciton of NN

• Each filter output of a convolutional layer is passed through f

• Logistic Sigmoid function: 

 Gradients all tend to zero

for large / small inputs

 All outputs are larger than zero! 

 Slow convergence in training!
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Nonlinearities II

• Tangens Hyperbolicus:

 Output is centered at 0

 Gradients still tend to zero                                                       

for large / small inputs

 Slow convergence in training!

• Rectified linear unit (ReLu): 

 Gradients don‘t saturate for a < 0

 Much faster convergence
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Nonlinearities III

• Leaky ReLu:

 Gradients are not 0 for a < 0!

 Parametric ReLu [He et al., 2015]: learn factor for a < 0

• Exponential linear units (ELu): 

 Slightly more robust to noise

 Gradients do saturate for small a

 Fast convergence
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Pooling Layers

• Reduce data volume by increasing the scale of the feature maps

• Combine k x k pixels by selecting one representative value

– Average  average pooling

– Take local maximum of the filter responses  max pooling

• Pooling increases the robustness against local shifts and noise
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Batch Normalization

• Batch normalisation:

– Usually carried out between convolutional layer and non-

linearity

– Training: normalize neuron outputs z using their means mz and 

standard deviations sz (computed over the minibatch):

– Classification: use overall means and standard deviations! 
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CNN: Training

• Stochastic minibatch gradient descent with momentum

– Additionally scale gradients based on their variance 

 Adam [Kingma & Ba, 2015]

• Data augmentation [Wu et al., 2015a]: 

– Automatically generate additional 

training samples

– Geometrical transformations (random 

shifts, rotations, scales, shears; flips)

– Radiometric transformations (change

colours, …)

– Acts as a kind of regularization

20
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CNN Training: Loss Functions

• Square sum of classification errors (cf. lecture Neural Networks): 

• Softmax (cross-entropy) loss: use output ynk of last layer as 

argument of the softmax function

ynr: output for the 

class label Ln
r of the training sample

• Hinge loss: 
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CNN Training: Loss Functions

• Example square sum of classification errors (3 classes; training 

sample belongs to class L2)
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CNN Training: Loss Functions

• Example softmax loss (3 classes; training sample belongs to class 

L2
 ynr = yn2)

• Tries to push softmax(yn2)  1 (thus, En  0)
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CNN Training: Loss Functions

• Example hinge loss (3 classes; training sample belongs to class L2

 ynr = yn2)

• Here, the loss is 0 because the maximum output corresponds to the 

correct class
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CNN Training: Regularisation

• Weight decay: add square sum of weights to data loss

• Data loss E(w): one of the loss functions  just discussed

• Alternative: use L1-norm of weights

• Regularisation is important to avoid overfitting
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CNN Training: Dropout

• In training: randomly drop r % of the connections (e.g. r = 50%)

 Gradient computation: set the weights to zero in forward pass

 Drop different connections in different iterations

26
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CNN Training: Dropout

• Dropout forces the network to have a redundant representation: if 

a neuron is dropped, it does not matter too much

• In fact, one trains a large ensemble of models (different patterns of 

dropped neurons)  avoid overfitting! 

• Due to dropout, the output becomes random 

• At test time, all neurons are used  one has to “average out 

randomness” 

 The weighted sum has to be multiplied by the probability r of 

dropping a neuron 

 We scale the activations so that for each neuron, the output at 

test time is identical to the expected output at training time
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CNN and Depth

• The depth of CNN has increased considerably over time

• ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

(adapted from [Fei Fei et al., 2017]): 

number of layers vs. top-5 errors

2015                 2014                  2014                2013                 2012                  2011               2010

ResNet          GoogLeNet             VGG                                       AlexNet

3.6%

6.7% 7.3%

11.7%

16.4%

25.8%

28.2%

shallow networks8 layers8 layers

19 layers22 layers

152 layers
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CNN - Pixelwise Classification

• So far, the input consisted of an entire image of a given size

• Only one class label was predicted for each image

 human face 0.01 

 frog  0.98

 bird  0.01

• Pixel-wise classification of images of arbitrary size: 

– Sliding window approach : 

Shift the input domain over the image 

Predict class of the central pixel at each position  slow

29
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CNN - Pixelwise Classification: FCN I

30

© [Long et al., 2015]

© [Long et al., 2015]

scores for “tabby cat”

• Better solution: Fully convolutional networks (FCN) with down-

sampling and upsampling inside the network [Long et al., 2015]

• Standard CNN: predict class for 

one image patch

• Fully convolutional networks:

– Perform each convolution over the entire image

– Result: down-sampled score for

for each class

– Needs to be 

upsampled
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Fully Convolutional Networks: Upsampling I

31

• Upsampling fully convolutional networks [Long et al., 2015]:

• The resolution of the score map is increased 

• Training: 

– Backpropagation

– Loss funciton:  sum of loss function over entire image

© [Long et al., 2015]
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Fully Convolutional Networks: Upsampling II

32

• Simplest method: bilinear interpolation

• Problem: poor representation of

object boundaries
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Fully Convolutional Networks: Upsampling III

33

• Better: backwards strided convolution (“transpose convolution“)

• Learn convolution filter

to determine class labels at intermediate pixels at full resolution

• The actual computation is not based on a convolution with many 

unnecessary multiplications with elements whose values are zero 

• Sometimes called “deconvolution“  should be avoided

0 0 0 0 0 0 0 0 0 0 0

0 1 0 3 0 3 0 2 0 1 0

0 0 0 0 0 0 0 0 0 0 0

0 1 0 6 0 9 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0

0 1 0 4 0 5 0 3 0 2 0

0 0 0 0 0 0 0 0 0 0 0

0 2 0 1 0 2 0 2 0 1 0

0 0 0 0 0 0 0 0 0 0 0

scores for class Ci

1 3 3 2 1

1 6 9 1 1

1 4 5 3 2

2 1 2 2 1

Upsample by 

factor f (here f = 2)

Set intermediate 

output pixels to 0

Convolution filter
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Fully Convolutional Networks: Unpooling I

34

• Segnet [Badrinarayanan et al., 2017]: use several convolutional 

layers for upsampling

• Better preservation of class boundaries: Unpooling layers

– In each pooling layer: remember which element was max.

– Use these indices for distributing responses in unpooling

– Here: downsampling structure from VGG16

© [Badrinarayanan et al., 2017]
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Fully Convolutional Networks: Unpooling II

• Max Unpooling [Badrinarayanan et al., 2017]

• After upsampling layer: convolutional layer to fill intermediate 

positions

• There are always corresponding pairs of pooling and unpooling 

layers
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CNN: Retraining I

• Training a CNN requires   a   l o t   of training samples (e.g. 

ImageNet: 1.2 million training images)

• Training may take several days or even weeks

• Retraining: use existing CNN with the trained weights and adapt it 

to a new problem with a smaller number of training samples 

 Transfer Learning

– Freeze lower layers (contain more generic information)

– Retrain upper layers (more specific), e.g. 

 Just the last FC layer  Class prediction

 Several FC layers, upper convolutional layers

• With CNN, retraining is the norm
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CNN: Retraining II

• The success of retraining depends on 

– The similarity of the problems to be solved

– The amount of training data that are available

• There may be interdependencies between layers  freezing 

intermediate layers may lead to a deterioration of results even for 

similar tasks [Yosinski et al., 2014] 

• Retraining seems to increase the accuracy of classifiction: the 

network “remembers“ the training samples seen in the past 

• If tasks are very different, freezing layers is not a good idea
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CNN: Retraining III

• Retraining recommendations [Fei-Fei et al., 2017]: 

– Similar problem, few training samples  retrain linear classifier 

on top layer

– Similar problem, lots of training samples  finetune a few layers

– Different problem, lots of training smaples  finetune a larger 

number of layers

– Different problem, few training samples: problematic! 

• Note that existing networks can even be applied to initialise CNN 

for different types of input, e.g. a CNN trained using RGB imagery 

can be used to initialize a CNN for height data! 

• The numbers of bands have to match  make 3 bands from DSM! 

38



Institute of Photogrammetry and GeoInformation

CNN example: CNN and Point Clouds

• Problem: Convolutions need raster data

• Topographic Applications: 2.5D raster DSM 

 standard CNN, e.g. [Paisitkriangkrai et al., 2016]

• 3D voxel space [Hackel et al., 2017]

– VoxNet [Maturana & Scherer, 2015]

– ShapeNet [Wu et al., 2015b]

• Immediate applications to unstructured point clouds: 

– PointNet [Qi et al., 2017]: not really CNN

• In general not as much research as for images

39



Institute of Photogrammetry and GeoInformation

CNN Example: AlexNet

40

© [Krizhevsky et al., 2012]

• Goal: Classification of entire images (size 224 x 224) 

 predict one class label per image

 ImageNet Large-Scale Visual Recognition Challenge (ILSVRC): 

1.2 million training images, 1000 classes

 5 convolutional layers, two FC layers, 

 With AlexNet, CNN really took off (15.3% top 5 error)
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CNN Example: VGGNet

41

• VGGNet [Simonyan & Zisserman, 2015]

(Visual Geometry Group, Oxford)

 Deeper networks 

 here: VGG16

 Slightly more layers: VGG19

 138 Million parameters! 

 Top 5 error in ILSVRC (VGG19): 

7.3%

VGG16              AlexNet

input

11 x 11 conv, 96

5 x 5 conv, 256

Pool

3 x 3 conv, 384

Pool

3 x 3 conv, 384

Pool

FC 4096

FC 4096

3 x 3 conv, 256

Softmax

FC 1000

input

3 x 3 conv, 64

3 x 3 conv, 64

Pool

3 x 3 conv, 128

3 x 3 conv, 128

Pool

3 x 3 conv, 512

3 x 3 conv, 512

Pool

3 x 3 conv, 512

3 x 3 conv, 512

3 x 3 conv, 512

Pool

3 x 3 conv, 512

FC 4096

FC 4096

FC 1000

Softmax
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CNN Example: GoogLeNet

42

© [Szegedy et al., 2014]

• GoogLeNet [Szegedy et al., 2015]:  22 Layers, no FC

 Basic building block: Inception modules

 Reduction of the number

of parameters by factor 12 compared to AlexNet

 1x1 convolutions: “bottleneck layers” (reduce number of filters)

 Errors similar to VGGNet, fewer parameters

Previous layer

1 x 1 conv. 1 x 1 conv. 3 x 3 max pool.

1 x 1 conv.5 x 5 conv.3 x 3 conv.
1 x 1 conv.

Filter concatenation
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CNN Example: ResNet I

43

• ResNet [He et al., 2015]

 Can we still go deeper with CNN? 

 Experiments show: if we go deeper with CNN, the errors 

saturate and later become even larger

 However, deeper networks lead to an increase of both, training 

and test errors  no overfitting, but optimization problem! 

 Experiment of thought: use shallow CNN and identity mappings

 The results should not be worse than the shallow network

 Obviously, learning such an identity mapping is difficult, 

because the additional layers degrade the accuracy if their 

parameters are learned

 Solution: use residual mapping
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CNN Example: ResNet II

44

• Residual mapping [He et al., 2015]: 

 What we want is a mapping x  H(x) 

 Identity mapping cannot be learnt easily

 Consequence: learn residual mapping F(x)

such that H(x) = F(x) + x

 This works by using shortcut connections 

 We have to learn F(x) rather than H(x)

 We can stack many such basic building blocks

 Very deep networks (up to 152 layers)  3.6% top 5 error! 

conv.

x

conv.

ReLu

H(x)

conv.

x

conv.

ReLu

H(x) = F(x ) + x

+

x

identity



Institute of Photogrammetry and GeoInformation

Example: Land Use Classification of GIS 

objects

45

• Network architecture: LiteNet [Paisitkriangkrai et al., 2016]

• LC result as     additional input, training from scratch incl. data 

augmentation

new: additional layers for average and area pooling

convolution block max-

pooling

average

-pooling

area-

pooling

softmax



Institute of Photogrammetry and GeoInformation

Example: Land Use Classification of GIS 

objects

46

• Network architecture: from LiteNet [Paisitkriangkrai et al., 2016]

• Land cover result as additional input, training from scratch incl. data 

augmentation

• new: additional layers for average and area pooling

convolution block max-

pooling

average

-pooling

area-

pooling

softmax
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Example: Results, Land Cover

47

input reference
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Example: Evaluation (Hameln, Schleswig)

48

Land cover

Data CRF [Albert et al., 2017] CNN-Approach

OA [%] Av. F1 [%] OA [%] Av. F1 [%]

Hameln 83.7 66.7 89.1 81.8

Schleswig 82.5 64.6 87.3 79.3

Land use

Data No. of CRF [Albert et al., 2017] CNN

objects OA [%] OA [%]

Hameln ~3300 78.3 81.9

Schleswig ~4500 72.1 78.0
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CNN: Discussion

• Today, CNN are considered to outperform other classifiers

• Strength lies in “high-level representation“  interpretation of a 

method for learning features, classifier itself is not so important

• Key to good performance: depth

• Open-source implementations: 

– Tensorflow (Google):  https://www.tensorflow.org

– CAFFE2 (Facebook): https://caffe2.ai/

• CNN are a “black box“ that is not easily understood

• There are tricks for fooling CNNs: see    

http://karpathy.github.io/2015/03/30/breaking-convnets/
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