Decision Tree

a non-probabilistic discriminative classifier

Contents

- Non-probabilistic Classifiers: Overview
- Decision Trees
- CART: Classification and Regression Trees
- Discussion

Non-probabilistic Discriminative Classifiers

- Goal: Definition of a function *f*(**x**) that predicts the class label *C* from the data **x**, i.e. $C = f(\mathbf{x})$
- Probabilities are not considered directly in this context

 \rightarrow No assumptions about the distribution of the data!

- Focus on decision boundaries \rightarrow Good results with a relatively low amount of training data
- Posterior probablities can usually be derived in post-processing \rightarrow Required for further processing in a probabilistic context

Non-probabilistic Discriminative Classifiers: Overview

- Different principles:
	- Decision Trees: Hierarchical classification of feature space
	- Random Forests: Combination of decision trees
	- Boosting: Combination of weak classifiers
	- Support Vector Machines: Find decision boundary having a maximum distance from the training samples
	- Neural Networks: Motivated by a model of information flow in neuron (cells of the nervous system)

– etc.

Decision Trees

- Many problems in everyday life are analysed by going through and answering a series of questions
- Example: Assume we have set of red and blue marbles, and we want to build a machine that sorts those marbles according to their colors
	- \rightarrow Question 1: "Is the color of marble red"?
		- If yes, marble goes to red class
		- If not:
		- \rightarrow Question 2: "Is the color of marble blue?"
			- If yes, marble goes to blue class

Decision Trees

• The machine has one marble input and two outputs (one for each class / colour)

Decision Trees

- Continue with same example, by adding a third class: green marbles
- This sequence of queries can be represented by a binary decision tree
- Decision Node: Queries / Decisions
- Leaf Node: Either a result or a probability
- Binary Tree: Every node that is no leaf has two child nodes

- Each decision splits the feature space up into sub-regions
- Feature vector $\mathbf{x} = (x_1, x_2)^\top$ is presented to the root node
	- Decision 1: is x_2 (NDVI) smaller than a threshold value θ_{NDVI} ?

- Each decision splits the feature space up into sub-regions
- Feature vector $\mathbf{x} = (x_1, x_2)^\top$ is presented to the root node
	- Decision 1: is x_2 (NDVI) smaller than a threshold value θ_{NDVI} ?
	- Decision 2 for *no vegetation*: is x_1 smaller than θ_{nDSM1} ?

- Each decision splits the feature space up into sub-regions
- Feature vector $\mathbf{x} = (x_1, x_2)^\top$ is presented to the root node
	- Decision 1: is x_2 (NDVI) smaller than a threshold value θ_{NDVI} ?
	- Decision 2 for *no vegetation*: is x_1 smaller than θ_{nDSM1} ?

- The feature space is hierarchically split into disjunct regions
- Different values for the three parameters $(\theta_{NDVI}, \theta_{DDSM1}, \theta_{DDSM2})$ lead to different results

Institute of Photogrammetry and GeoInformation

Decision Trees: Discussion

- Very simple and "clear" design \rightarrow very popular
- Can be adapted by the user easily (choice of thresholds)
- This partitioning of the feature space does not adapt very well to the shapes of the clusters in feature space
- Result depends on the choice of the threshold values
- Different possibilities for the construction of the tree
	- \rightarrow Can these trees be learned for the training data?
	- \rightarrow Is there a better way to adapt the decision boundaries than interactive trial-and-error?

CART (Classification and Regression Trees)

- General method for learning of binary trees
- Applicable for classification, regression and clustering
- There are different versions of CART
- What is to be determined during training?
	- 1) How to split the data in each node?
	- 2) How to decide whether a node corresponds to a leaf or not?
	- 3) How to determine which class corresponds to a leaf?

CART: Splitting of Data

- A test is carried out in each node
- Up to now: Each test is based on the comparison of a feature with a threshold value
- More general type of test: Split the feature space with a linear decision boundary (a hyperplane)
	- \rightarrow Simultaneous consideration of several features
	- \rightarrow Allows for decision boundaries in feature space that are not parallel to the coordinate axes
- The type of the tests (threshold vs. hyperplane) must be defined in advance
- Learning the tests only requires a part (e.g. 1/3) of the training data

CART: Learning of the Tests

- In each node of the tree:
	- Randomly select *n* features
	- Randomly generate *r* different separating hyperplanes operating on the selected features
	- Each hyperplane is examined according to how well it can separate the data
		- \rightarrow information gain criterion
	- The best hyperplane is retained for the node
- The number of features for the test has to be specified by the user good value for D-dimensional feature vectors: $n = \sqrt{D}$ $n = \sqrt{D}$
15 *i* θ_i^l *l* $\begin{bmatrix} l \\ 0 & 2 \end{bmatrix}$ Leibniz
Universität

CART: Selection of the Separating Hyperplane

- The parameters of the tests (threshold vs. hyperplane) can be learned
- Separating hyperplane: $w^T \cdot x + w_0 = 0$

→w: random numbers numbers in [-1, 1] for the *n* features selected randomly; for the other features, the components of **w** are set to 0

 \rightarrow *w*₀: random number between [min ($w^T \cdot x$), max ($w^T \cdot x$)]

- The hyperplane splits the training data in two parts M_1 , M_2 :
	- 1) M_1 : $w^T \cdot x + w_0 \le 0$
	- 2) M_2 : $w^T \cdot x + w_0 > 0$
- M_1 and M_2 correspond to the branches leaving the node

CART: Information Gain

- For each of the subsets (M_1, M_2) generated by the test, a histogram of the class labels can be determined
- The histogram entries for M_j are interpreted as P_j (C=L^k)
- Criterion for the quality of the separation: information gain ΔE :

$$
\Delta E = \frac{N_1}{N_1 + N_2} \cdot \sum_{k} P_1 (L^k) \cdot \log_2 [P_1 (L^k)] + \frac{N_2}{N_1 + N_2} \cdot \sum_{k} P_2 (L^k) \cdot \log_2 [P_2 (L^k)]
$$

(only relevant terms are shown)

- N_1 , N_2 are the number of training samples in M_1 and M_2 , respectively
- Each of the sums is the entropy E of the histogram
- The bigger ΔE , the better a hyperplane separates the data

• Example with three classes, two features x_1 , x_2

- The decision boundaries are generated after a few step(tree with a depth of 3):
	- \triangleright Random selection of a separatiing hyperplane
	- \triangleright Determination of the histogram
	- \triangleright Computation of information gain and selection of the hyperplane with maximum ΔE
	- \triangleright Repeat recursively for M₁

DT (3 layer)

19

• After same process repeated here, we can think about the influence of the depth

DT (3 layer)

- A tree with a depth of 7
- Increasing the number of layers, the tree starts to add thin areas that correspond to outliers
- The model is overfitting to the training data
- When to stop the recursion?

CART: Stopping Criteria for Training

- For a unique assignment of a leaf to class: recursion is finished if only training samples of a single class are available in the leaf
- This may lead to overfitting and very deep trees \rightarrow finish the recursion if
	- very few training samples fall into one node
	- the information gain is very small
	- a specified maximum depth is reached
- If one of the termination criteria is met, a node is declared to a leaf
- As soon as each path through the tree ends in a leaf, the training of the test is finished

CART: Assignment of Leafs to Classes

- Remember: The learning of the tests only requires a part (e.g. 1/3) of the training data
- The remaining training samples are presented to the tree and passed through the tree until they end up in a leaf
- In every leaf *b* the normalised histogram of class labels $P_b(C=L^k)$ is determined on the basis of the training samples arriving at the leaf
- Interpretation of histogram as posterior : $P(C=L^k | \mathbf{x}) = P_b(C=L^k)$
- The leaf is assigned to the class for which $P(C=L^k|\mathbf{x}) \to \max$
- The posterior can be stored in the leaf if a probabilistic output is required

CART: Pruning

- Problems of the CART-algorithm:
	- Overfitting
	- Generation of trees that are too deep
	- Generation of trees that have too many leaves
		- \rightarrow Pruning: check whether the training error or a different criterion will change significantly if a node that is not a leaf is declared a leaf; if not \rightarrow branches emanating from that node are deleted
- Variants of decision trees
	- ID3: Multipath splits, termination if all leaves are "pure"
	- C4.5 [Quinlan, 1993]: based on ID3, includes pruning

CART: Discussion

- How many features or tests should one try?
	- $-$ Only one \rightarrow "Extremely randomized tree"
	- Few \rightarrow Fast training, may lead to underfitting
	- Many \rightarrow slower training, may lead to overfitting
- Decision Stump: The simplest conceivable tree consisting of the root and two leafs only
	- Used in combination with other methods

Discussion

- CART are still quite popular
- Requires good choice of the parameters for learning
	- Type of the tests to be caried out in each node
	- Number of features per test
	- Number *r* of attempts to find the optimal boundary in a node
	- Minimum number of training points per node
	- Maximum depth
- Very fast both in training as well as in classification
- CART have a tendency to overfit
- Small changes in the training data can lead to major changes in the decision boundaries

