Logistic Regression

a probabilistic and discriminative classification model

iﬁ Institute of Photogrammetry and Geolnformation



Contents

 Discriminative classification
* Logistic Regression

» Generalized Linear Models
* Training

» Multi-class Problems

* Discussion

‘ i;’( Leibniz
. . 2 0 Z | Universitit
iﬁ Institute of Photogrammetry and Geolnformation




Discriminative Classifiers

* Discriminative classifiers:
— ldea: direct modelling of p(C | x)

— Motivation: separating feature space into regions that represent
iIndividual classes

— In general, this leads to simpler models and, therefore, requires
fewer training samples

- Discriminant function: a function g;(x) that assigns x to a class L/,
Iif gi(x) > g;(x) for all i # |

« The discriminant function sub-divides the feature space into regions
R. which are assigned to the class L

* The boundaries of these regions are given by g;(x) = g;(x)
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Discriminative Methods: Overview

* Probabilistic discriminative classifiers: Discriminant function is
based on p(C'| x)

— Logistic Regression: first designed for binary classification

— Generalized Linear Models: extension for high-dimensional
decision boundaries

« Non-probabilistic discriminative classifiers: the discrimant function
cannot be interpreted as a probability e.g.

— Decision trees
— Random forests
— Support vector machines

— Artificial neural networks
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Logistic Sigmoid Function

 Distinction of two classes L1, L2 (e.g. object and background)
- Start with Theoremlof I?ayes: o(x|C=L1) - p(C=LY) )
PIE=LIX) = p(xIC=L1) - p(C=LY) + p(XIC=L?) - p(C=L?) 7

. 1
= pXICED) pCE) T 1+ea @

p(X|C=L") - p(C=L")

| . p(xlc=L)-p(C=L)  p(C=L"]x)
with a(x)_lnp(x|C=L2)-p(C=L2)_|np(C=L2|x)
 Logistic sigmoid function
1
O-(a)_l+e‘a
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Logistic Sigmoid Function

 Originally, this is a generative model, because it is based on the
theorem of Bayes

* a(x) is the negative logarithm of the ratio of the posterior
probabilities

* From now on: consideration of a(x) without Bayesian interpretation

« Simple models for a(x): linear

or quadratic functions L 5™

» logistic sigmoid function: /
0,5
1 J
X)=
(%) 1+e™
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Logistic Regression

* (Unrealistic) assumption (but, to be able to have linear function for
a(x) later): The features of x are normally distributed with mean
values Y, and p, and identical covariance matrices ¥, =%, =X

p(x|C=L") - p(C=L")

a(x) =1In =
p(x|C=L?) - p(C=L?)

= (x-p)T - T (x - ) + %2 (x - )T - 2L (x - ) + In p(C=LY) — In p(C=L2) =

= (- )T - T x -y T Ty + % T X, +1In p(C=LY) — Inp(C=L2) =

Y —~"
= w' - X + W,
1
p(C=LYx) = = o(ax)) =cW" - x +wp)

1+ WX o)

* thus: 2 a(x) is a linear function of the features!
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Logistic Regression: Parameters

* In the binary case, we have p(C=L?|x) = 1 - p(C=L1|x), due to
l-o0(a)=o(-a),

1
P C :Lllx - —(wT x+w and p C :L2 |X - W' X+W
. 1 1
« Class boundary in feature space: - o wg) (W xwg)
1+e 7o 1+e i

> —(Whx+w, ) =w" X +w,

>wWlh-x+w,=0 —> The decision boundary between
the classes is a hyperplane

« Parameters to be learned: w, w,
- with D features: D + 1 parameters

- The number of parameters grows linearly with D
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Logistic Regression: Seperating Surface

 Decision boundary in feature space: w' - x + w, =0

— Normal vector w = St - (i, - I,) depends on the vector between
the class centers, direction is also influenced by S

— Offset wy,:
Wo= -% " - STy +% " - Sty +In p(C=LY) — In p(C=L?)

— Changes to the prior lead to a parallel shift of the decision
boundary
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Logistic Regression:
Geometrical Interpretation

e Decision boundary in feature space: - w' - X +w,=0
0

» For a point X, that does not lie on the separating surface:

WT X+ Wo = || W | - d(e, x,)

1

—(WT X+W, )

C=L|x)=
p( | ) 1+e

Lworiwl ~ o )

 Interpretation of probability:as a sigmoid function applied to the 1
(scaled) distance from the separating surface that maps this
distance into the interval [0,1]!

10
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Logistic Regression: Geometrical
Interpretation

* Interpretation of || w ||: The larger || w ||, the steeper the sigmoid
function
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Notion: “Logistic Regression®

« "Regression": search for an optimal linear separating surface in
feature space

« "logistic": Basis is the logistic sigmoid function

« The principle that the sigmoid function is applied to a scaled
distance to get a probability is often used in other contexts

« What happens with data that are not linearly separable?
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Generative Model: Normal Distribution with

different Covariance Matrices

* In general, the class boundary is not a hyperplane but a
hyperquadric

* New assumption for features distribution: the covariance matrices
are not identical, the quadratic term in the exponent does not
disappear:

with W =% . (S,1-S;71)
W =Sl =Syt g
WO: 15 . HZT . Sz-l .uz -5 ulT . Sl-l .“1 +
+15-In 1S, [l - % - In [I'S, || + In p(C=LY) - In p(C=L?)

« With increasing complexity of the models for the probability
densities: a quadratic form for normal distributions

p(C=L*x) =

1+e—(xT-W-x+ wT - X + W)

* |n order to be able to work with linear medels: Transformation of
the feature space (Feature Space Mapping)
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Feature Space Transformations and
Generalized Linear Models
« Feature Space Mapping ®(x) = [@,(X), D,(X), ..., Dy(X)]"
— @(x): (in principle) arbitrary functions: frequently, polynomials

— N: Dimension of the transformed feature vector (usually greater
than the dimension of x)

— Frequent choice: @,(x) =1
— Example for 2D feature space, i.e. X = (X, X,):
D(X) = (1, X3, Xp, X1 * Xp, %1%, Xp°)"

 Instead of using a complex model for a(x): Transition into a higher
dimensional feature space in which a(®(x)) is linear
= Generalized Linear Models
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Feature Space Transformations and
Generalized Linear Models

« Generalized Linear Models:

p(C=LX) = ola ()] = T
with  a(X) =wT' - ®(x)
and  ®(X) = [D,(X), D,(X), ..., Dy(X)]"

* Note: Due to @,(x) =1, w, becomes the first component of w

« The example of ®(x) = (1, X, X,, X; * X5, X;%, X,°)T leads to a
guadratic form for a(x) similar to the normal distribution!

« Assumptions about the distribution of the features are dropped in
favour of a choice of a feature space mapping

« Choices: Quadratic expansion, Cubic expansion, Kernel logistic
regression
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Examples of Feature Space Mappings |

« Transition to a higher-dimensional feature vector ®(x)

« Example:

Feature space transformation

. L2
Class boundaries

L2

L2 I/Ll\l L2
| |

Ll

1D feature space, 2 classes
Not linearly separable

2D feature space (X, x?)

After feature space transformation:

Classes can be separated by a plane ¢
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Feature Space Mapping

« Using a feature space mapping, linear models can also be applied
to problems where the classes are not linearly separable

* Disadvantage: Increase of the number N of parameters:

— Polynomial expansion: with D features (incl. &;(x)= 1), order G:

(D+G—ﬂ
N =
> G=2>N=D- (D+1)/2 G
» G=3->N=D-(D+1) - (D+2)/6
— Kernel Function: N is equal to the number of training points

— Could be problematic for feature spaces with D > 10

17
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Logistic Regression: Training

« Given:
— Functional model of feature space mapping
— N points x; with known t, € {0,1}

— t: indicator variable that shows if x; belongs to L!
(t =1) or not (t = 0)

— All the indicator variables t, can be collected in a vector t

« Wanted :
— Parameter vector w of the generalized linear model

1
1+ e_[WT o))

p(C=L"]x)=
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Logistic Regression: Maximum Likelihood

Training
» Determine w in such that p(t | w, x,, ... X)) = max
with
1
Y, :p(C:Lllxn): —[WT-(D(X )} and p(C:L2|Xn):1_yn
l+e )
o (1-t,)
- Result p(tIw,x,,...xy)=]Tyr-(1-v,)
n=1

— fort, = 1: vy, will contribute
— fort, = 0: (1 -y,) will contribute
* Instead of the maximization of p(t | w, X4, ... Xy):

Minimization of the negative log-likelihood
E(w) =-Inp(t | w, X, ... Xy) = Min
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Logistic Regression: Maximum Likelihood
Training
Negative log-Likelihood E(w):

E(w)=->[t,-In(y,)+(1-t,)-In(1-y,)] - min

n=1

* Asy, depends on w, E(w) is a non-linear function of w

« Therefore, the minimum of E(w) can only be determined iteratively
* |nitial values w?: e.g. random numbers

* E(w) is concave and has a single minimum

* Determination of the minimum: gradient VE(w) = 0

- Newton-Raphson method(find path to the minimum): using the initial
valuesw™l:  w =w™l—-H!.VE (WH)
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Logistic Regression: Maximum Likelihood
Training
+ Gradient VE(W):  VE(w)=3(y, -t,)-®(x,)

n=1
— Interpretation: (y, — t,) can be interpreted as classification error

for the training point x,:

2> 1Ift,=1>C=Lt>y, =p(C!|x,) should be close to 1
> Ift, =0 > C =L? - y, should be close to 0

— VE(w): sum of the feature vectors weighted by (y,—1t.)
* Hesse Matrix H=VVE(w Zyn 1-y,)-®(x,) - D(x,)

« Hesse-Matrix is positive definite = inverse exists
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Logistic Regression: Maximum Likelihood
Training

In order to avoid numerical problems:

- Scaling of the features :

— Shift by mean value g, scaling with standard deviation 1/ o
- Features all have the same range of values

— The same scaling has to be applied for training and
classification!

* ML has the tendency to overfit the classifier to the training data:
classifier memorizes the training samples and isn’t generalizing to
unseen data-> regularisation of parameters using prior for w

« MAP: Maximization of p(w | t, Xy, ... Xy) o< p(t | W, X4, ... Xy) - p(wW)

* p(t|w, Xq, ... Xy) Corresponds to the Likelihood (as with ML)

22
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Logistic Regression: Training with

Regularization

* Prior p(w):

— Sigmoid slope depends on the
size of the numerical values
of the coefficients w; in w:

* The larger |w; |, the steeper
the sigmoid function

« The steeper the sigmoid
function, the less smooth
the transition

* Forw, 2> «the
sigmoid function becomes
a step function

-3,00

1,00
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Logistic Regression: Training with
Regularization
* To keep the numerical values of w small:

* Prior p(w): Normal distribution with expectation value 0 and
Covariance Matrix o2 - |

« Corresponds to regularization in adjustment theory

* Requires hyper-parameter o which is either fixed by the user or
determined via a procedure such as cross-validation

. Negative Iogarithm (excluding constant terms):

i[t In(y ~t,)-In(1-vy,) ]+

 Leadsto the numerlcal values of w that are as small as p055|ble

w' -w .
— min

24
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Logistic Regression: Training with
Regularization

« Gradient has to be extended compared to the ML method:

Z[t In(y )Inly]+T

. ThIS IS also true for the Hesse Matrix:
1

VE(W)zZ(yn —tn)-¢(xn)+0_2ow

n=1

;- —> min

l.e. In the main diagonal, the weights of the direct observations for w
are added (as in the case of regularization in adjustment)

1

H=VVE(W)=ZN:[yn-(1—yn)'¢(xn)-¢(xn)T]+?-I

n=1
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Logistic Regression: Example

Two classes, two features: non linearly separable case
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Logistic Regression: Example

Two classes, two features: non-linearly separable case

550

| lteration |
log-likelihood as a function of
the iteration count in training

P(C=L"x4,%,) P(C=L2|Xy,X,)

white ... high probability
black ... low probability

« Small differences in the posterior probabilities
 Relatively large value for E(w)
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Logistic Regression: Example

Two classes, two features: non-linearly separable case
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Logistic Regression: Example

Two classes, two features: non-linear separated case with
characteristic spatial transformation

v - I

700

600

500 -

~~
; 400+
N—r

L] 300t

200 -

100 F

0

1 2 3 4 ISterEatIE)n g 9 10 11
C=L1YIx,,x =L2 . :

P( | X; _2) - PC=Lox %) log-likelihood as a function of
white ... high probability, the iteration count in training
black ... low probability

« Significant differences in the posterior probabilities
* Low value for E(w) Is reached
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Transition to Multi-class Problems

« The posterior probability p(C=L¥| x) for each class Lk can be
modelled using the softmax function:

exp [ay(x)]
jZ exp [aj(x)]
with a,(x) = In [p(x | C=LY¥)] + In [p(C=L")]

« Assumptions about p(x | C=L¥) and p(C=L¥) lead to models for a,(x)

p(C=L¥x) =

« Again, feature space mapping can help to obtain linear models:
8, (X) = a(®(x)) = w,T - B(x)

* In training, one parameter vector w, per class has to be determined

« Softmax function: p(C LK |Xn): exp[w[ "D(Xn)]

iZi:exp wi-®(x,)]

- ynk

30
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Multi-class Logistic Regression: Training

» Training: class label C, is given for each training point X,

« Maximum Likelihood training is similar to the two-class case: the
negative log-likelihnood has to be minimized'

E(w, ZZtnk (Yo ) — min

with the binary indicator varlables e
1 If C =L
M... number of classes t, = n
O otherwise

« Again, the the Newton-Raphson can be applies: Using the current
values w! from the previous iteration, the weights are updated

according to
WT — Wr—l . H—l . VE (Wr—l)

31
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Multi-class Logistic Regression: Maximum
Likelihood Training

The parameter vectors are not independent

- One parameter vector must be declared to be constant,
eg.w,"'=(0,..0)7

w, IS not changed in the optimization procedure
- The parameter vector w to be determined if M classes are to be
discerned becomes: w = (w,', ..., w,")T

Gradient of the negative log-likelihood

(Derivative of E by the weight vector of the class j):
N

Vo, E(Wyoowy, )= Z(ynj -1, ) -®(x,)
Total gradient vector : "

T T7
VE(Wl,...WM)Z[VWZE(Wl,...WM) yoor Vi E(Wp,eo oWy, ) ]
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Multi-class Logistic Regression: Maximum
Likelihood Training

« Again, the gradient can be interpreted as the sum of the (transformed
feature vectors weighted by the “classification error” (y,; — t;)

» Hesse matrix H also consists of several components :

H22 H23 H2|v|
H— H;3 H33 H3M
H;M HLT%M HMM

l; --- Elements of a unit matrix

* Regularisation: As in the binary case (Gaussian prior with
expectation 0 and Covariance o

H =V, V E Zynk (ij_ynj)°¢(xn)°¢(xn)T

33
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Multi-class Case: Example (ML-Training)

Four classes, two features

L. | 4

L3

X

Training samples in
feature space (800)

X
Regions assigned to the four classes’

in feature space
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Multi-class Case: Example (ML-Training)

Four classes, two features: posterior probabilities

P(C=L1x1,X,) P(C=L2[X{,X,) P(C=L3|x1,X,) P(C=L%[Xy,X,)

white... high probability, black ... low probability

In the areas where the feature distributions overlap, the boundaries
are slightly blurred
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Multi-class Case: Example (ML-Training)

Four classes, two features:
Development of the log-likelihood during training

200

lteration
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Multi-class Case: Example (ML-Training)

Three classes, two features, not linearly separable

y no feature space mapping
2 X5

. +L2
L - T 'y ++ +
! + +
.-‘ilr_ #t‘%"‘-l-"’ :r H:\‘: " P
=] '!i-f-l-: o, ‘"“_""‘“_1- + 3 +,,;|-"‘.|.t|+
4 - 3} +
b
s P
o, S

X
Training samples in Regions assigned to the three classes

feature space (800) in feature space
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Multi-class Case: Example (ML-Training)

Three classes, two features, not linearly separable, no feature space
mapping: development of log-likelihood during training

3500 T

3000 -

2500+

E(w)

20001

1500 -

1000 -

500
1

lteration
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Multi-class Case: Example (ML-Training)

Three classes, two features, not linearly separable —

y guadratic expansion
2 X5

X
Training samples in Regions assigned to the three classes

feature space (800) in feature space

L {i 1] Leibniz
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Multi-class Case: Example (ML-Training)

Three classes, two features, not linearly separable —
guadratic expansion: posterior probabilities

P(C=L1x;,X,) P(C=L2[x1,X,) P(C=L3[X1,X,)
white ... high probabilitiy, black ... low probability

* Inthe areas where the feature distributions overlap, the boundaries
are slightly blurred

 However, in general there is a very clear distinction = Overfitting
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Multi-class Case: Example (ML-Training)

Three classes, two features, not linearly separable —
guadratic expansion: development of log-likelihood during training

3000

2500

2000

E(w)

1500 |

1000 F

500

0

1 1 | 1 1 1
0 2 4 6 8 10 12 14

lteration
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Multi-class Case: Example (ML-Training)

Three classes, two features, not linearly separable — quadratic

expansion, training with relatively strong regularization (c = 2)
2 X5

X
Training samples in Regions assigned to the three classes

feature space (800) in feature space
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Multi-class Case: Example (ML-Training)

Three classes, two features, not linearly separable — quadratic
expansion, training with regularization: posterior probabilities

P(C=L1x;,%y) P(C=LZ|x4,X,) P(C=L3Ixy,X,)
white ... high probability, black ... low probability

« Much smoother transitions, uncertainty of the classification is better
represented
» Class boundaries may be regularized too strongly

= i
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Discussion

» Discriminative probabilistic methods directly model the
posterior probability

No assumption about the distribution of data required
Basically, boundaries between classes are learned
Linear Models with / without feature space transformation
» Fewer parameters to be determined
» Fewer training data is required

Can be expanded to multi-class problems(model posterior
probability using softmax function)

Efficient learning / classification

Probabilistic output simplifies further processing

iﬁ Institute of Photogrammetry and Geolnformation
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Discussion

* Despite feature space transformation, the functional model cannot fit
properly to the distribution of the data

—> Transition to non-probabilistic methods

« High-dimensional feature vectors can lead to a large number of
parameters to be learned

* Numerical problems - scaling of the features in training and during
the classification

« ML-Learning: Problem of overfitting > Regularisation

— Requires prior for the parameter vector w
- Hyper-parameter o (cross validation)

45
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