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Discriminative Classifiers

• Discriminative classifiers:

– Idea: direct modelling of p(C | x)

– Motivation: separating feature space into regions that represent 

individual classes

– In general, this leads to simpler models and, therefore, requires 

fewer training samples

• Discriminant function: a function gi(x) that assigns x to a class  Li,    

if  gi(x) > gj(x) for all i  j

• The discriminant function sub-divides the feature space into regions  

Ri which are assigned to the class Li

• The boundaries of these regions are given by gi(x) = gj(x)
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Discriminative Methods: Overview

• Probabilistic discriminative classifiers: Discriminant function is 

based on p(Ci | x)

 Logistic Regression: first designed for binary classification

 Generalized Linear Models: extension for high-dimensional 

decision boundaries

• Non-probabilistic discriminative classifiers: the discrimant function 

cannot be interpreted as a probability e.g.

– Decision trees

– Random forests

– Support vector machines

– Artificial neural networks
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Logistic Sigmoid Function

• Distinction of two classes L1, L2 (e.g. object and background)

• Start with Theorem of Bayes:

with 

• Logistic sigmoid function

p(C=L1|x) = =

=                                            =                    = s(a)

p(x|C=L1) · p(C=L1) 

p(x|C=L1) · p(C=L1) + p(x|C=L2) · p(C=L2) 

1 

1 + 
p(x|C=L1) · p(C=L1) 

p(x|C=L2) · p(C=L2) 

1 

1 + e-a

 
   
   

 
 

   
 

   

1 1 1

2 2 2

| |
ln ln

| |

p C L p C L p C L
a

p C L p C L p C L

x x
x

x x

 s





1

1 a
a

e

5



Institute of Photogrammetry and GeoInformation

Logistic Sigmoid Function

• Originally, this is a generative model, because it is based on the 

theorem of Bayes

• a(x) is the negative logarithm of the ratio of the posterior 

probabilities

• From now on: consideration of a(x) without Bayesian interpretation

• Simple models for a(x): linear

or quadratic functions 

• logistic sigmoid function:
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Logistic Regression

• (Unrealistic) assumption (but, to be able to have linear function for 

a(x) later): The features of x are normally distributed with mean 

values µ1 and µ2 and identical covariance matrices S1 = S2 = S

• thus:  a(x) is a linear function of the features!

a(x) = ln                                  = 

= -½ (x - µ1)
T · S-1· (x - µ1) + ½ (x - µ2)

T · S-1· (x - µ2) + ln p(C=L1) – ln p(C=L2) =

= (µ1 - µ2)
T · S-1 · x - ½ µ1

T · S-1· µ1 + ½ µ2
T · S-1· µ2 + ln p(C=L1) – ln p(C=L2) =

=         wT · x +                    w0

p(x|C=L2) · p(C=L2) 

p(x|C=L1) · p(C=L1) 

p(C=L1|x) =                                = s (a(x)) =s (wT · x + w0)
1 

1 + e 
-(wT · x + w0 )
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Logistic Regression: Parameters

• In the binary case, we have p(C=L2|x) = 1 - p(C=L1|x), due to             

1 - s (a) = s (-a), 

• Class boundary in feature space: 



 wT · x + w0 = 0  The decision boundary between

the classes is a hyperplane 

• Parameters to be learned: w, w0

 with D features: D + 1 parameters

 The number of parameters grows linearly with D
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Logistic Regression: Seperating Surface

9

• Decision boundary in feature space: wT · x + w0 = 0

– Normal vector w = S-1 · (µ1 - µ2) depends on the vector between 

the class centers, direction is also influenced by S

– Offset w0: 

w0 =  - ½ µ1
T · S-1 · µ1 + ½ µ2

T · S-1 · µ2 + ln p(C=L1) – ln p(C=L2)

– Changes to the prior lead to a parallel shift of the decision 

boundary
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• Decision boundary in feature space: e: wT · x + w0 = 0

• For a point xp that does not lie on the separating surface: 

wT · xp + w0 = || w || · d(e, xp)

• Interpretation of probability:as a sigmoid function applied to the 

(scaled) distance from the separating surface that maps this 

distance into the interval [0,1]! 

Logistic Regression: 

Geometrical Interpretation

eL1
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• Interpretation of || w ||: The larger || w ||, the steeper the sigmoid 

function

Logistic Regression: Geometrical

Interpretation

eL1

L2

w

xp

w0 / ||w||
x1

x2
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Notion: “Logistic Regression“

• "Regression": search for an optimal linear separating surface in 

feature space

• "logistic": Basis is the logistic sigmoid function

• The principle that the sigmoid function is applied to a scaled 

distance to get a probability is often used in other contexts

• What happens with data that are not linearly separable?
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Generative Model: Normal Distribution with

different Covariance Matrices
• In general, the class boundary is not a hyperplane but a 

hyperquadric

• New assumption for features distribution: the covariance matrices 
are not identical, the quadratic term in the exponent does not 
disappear:

with W = ½ · (S2
-1 - S1

-1) 

w = S1
-1 · µ1 – S2

-1 · µ2

w0 = ½ · µ2
T · S2

-1 ·µ2 -½ · µ1
T · S1

-1 ·µ1 +

+ ½ · ln || S2 || - ½ · ln || S1 || + ln p(C=L1) - ln p(C=L2)

• With increasing complexity of the models for the probability 

densities: a quadratic form for normal distributions

• In order to be able to work with linear medels: Transformation of 

the feature space (Feature Space Mapping)

p(C=L1|x) = 
1 

1 + e 
-(xT · W · x + wT · x + w0)
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Feature Space Transformations and 

Generalized Linear Models

• Feature Space Mapping F(x) = [F1(x), F2(x), …, FN(x)]T

 Fi(x): (in principle) arbitrary functions: frequently, polynomials

 N: Dimension of the transformed feature vector (usually greater 

than the dimension of x)

 Frequent choice: F1(x) = 1

 Example for 2D feature space, i.e. x = (x1, x2)
T:

F(x) = (1, x1, x2, x1 · x2 , x1
2, x2

2)T

• Instead of using a complex model for a(x): Transition into a higher 

dimensional feature space in which a(F(x)) is linear

 Generalized Linear Models
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Feature Space Transformations and 

Generalized Linear Models

• Generalized Linear Models: 

with a(x) = wT · F(x)

and F(x) = [F1(x), F2(x), …, FN(x)]T

• Note: Due to F1(x) = 1, w0 becomes the first component of w

• The example of F(x) = (1, x1, x2, x1 · x2 , x1
2, x2

2)T leads to a 

quadratic form for a(x) similar to the normal distribution!

• Assumptions about the distribution of the features are dropped in 

favour of a choice of a feature space mapping

• Choices: Quadratic expansion, Cubic expansion, Kernel logistic 

regression

p(C=L1|x) = s[a (x)] = 
1 

1 + e -a(x)
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• Transition to a higher-dimensional feature vector F(x) 

• Example:

1D feature space, 2 classes

Not linearly separable

Examples of Feature Space Mappings I

e

x1 = x

x2 = x2

L2

x
L2 L1

Class boundaries

L1

L2 L2

After feature space transformation: 

2D feature space (x, x2)

Classes can be separated by a plane e

 
 

  
 

2

x
x

x
Φ

Feature space transformation
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Feature Space Mapping

• Using a feature space mapping, linear models can also be applied 

to problems where the classes are not linearly separable

• Disadvantage: Increase of the number N of parameters: 

 Polynomial expansion: with D features (incl. F1(x)= 1), order G: 

 G = 2  N = D · (D+1) / 2

 G = 3  N = D · (D+1) · (D+2) / 6

 Kernel Function: N is equal to the number of training points

 Could be problematic for feature spaces with D > 10

1D G
N

G

  
  

 
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Logistic Regression: Training

• Given: 

– Functional model of feature space mapping

– N points xi with known ti  {0,1}

– ti: indicator variable that shows if xi belongs to L1

(ti = 1) or not (ti = 0)

– All the indicator variables ti can be collected in a vector t

• Wanted :

– Parameter vector w of the generalized linear model
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Logistic Regression: Maximum Likelihood 

Training

• Determine w in such that p(t | w, x1, … xN)  max

with

• Result

– for tn = 1:  yn will contribute

– for tn = 0: (1 - yn) will contribute

• Instead of the maximization of p(t | w, x1, … xN): 

Minimization of the negative log-likelihood

E(w) = -ln p(t | w, x1, … xN)  min

 
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Logistic Regression: Maximum Likelihood 

Training

• Negative log-Likelihood E(w):

• As yn  depends on w, E(w) is a non-linear function of w

• Therefore, the minimum of E(w) can only be determined iteratively

• Initial values w0: e.g. random numbers

• E(w) is concave and has a single minimum

• Determination of the minimum: gradient E(w) = 0

• Newton-Raphson method(find path to the minimum): using the initial 

values wt-1:

       


         
1

ln 1 ln 1 min
N

n n n n

n

E t y t yw
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Logistic Regression: Maximum Likelihood 

Training

• Gradient E(w): 

– Interpretation: (yn – tn) can be interpreted as classification error 

for the training point xn: 

 If tn = 1  C = L1
 yn = p(C1 | xn) should be close to 1

 If tn = 0  C = L2
 yn should be close to 0

– E(w): sum of the feature vectors weighted by (yn – tn)

• Hesse Matrix

• Hesse-Matrix is positive definite  inverse exists 

     


   
1

N

n n n

n

E y tw Φ x
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1
N

T
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n
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Logistic Regression: Maximum Likelihood 

Training

• In order to avoid numerical problems:

Scaling of the features : 

 Shift by mean value m, scaling with standard deviation 1 / s
 Features all have the same range of values

 The same scaling has to be applied for training and 

classification! 

• ML has the tendency to overfit the classifier to the training data: 

classifier memorizes the training samples and isn’t generalizing to 

unseen data regularisation of parameters using prior for w

• MAP: Maximization of p(w | t, x1, … xN)  p(t | w, x1, … xN) · p(w)

• p(t | w, x1, … xN) Corresponds to the Likelihood (as with ML)
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Logistic Regression: Training with 

Regularization

• Prior p(w):

– Sigmoid slope depends on the

size of the numerical values

of the coefficients wi in w: 

• The larger |wi |, the steeper 

the sigmoid function

• The steeper the sigmoid                                                       

function, the less smooth

the transition

• For wi   the

sigmoid function becomes

a step function

23
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Logistic Regression: Training with 

Regularization

• To keep the numerical values of w small:

• Prior p(w): Normal distribution with expectation value 0 and 

Covariance Matrix s2 · I

• Corresponds to regularization in adjustment theory

• Requires hyper-parameter s which is either fixed by the user or 

determined via a procedure such as cross-validation

• Negative logarithm (excluding constant terms):

• Leads to the numerical values of w that are as small as possible
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Logistic Regression: Training with 

Regularization

• Gradient has to be extended compared to the ML method:

• This is also true for the Hesse Matrix:

i.e. in the main diagonal, the weights of the direct observations for w 

are added (as in the case of regularization in adjustment)
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Logistic Regression: Example

x1

x2

L1

L2

x1

x2

Two classes, two features: non linearly separable case

 The classifier cannot seperate the classes!

Training samples in 

feature space (800)

Regions assigned to the two classes 

in feature space

L1

L2
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Logistic Regression: Example

Two classes, two features: non-linearly separable case

p(C=L1|x1,x2)

white ... high probability

black ... low probability

p(C=L2|x1,x2)

• Small differences in the posterior probabilities

• Relatively large value for E(w) 

Iteration

E
(w

)

log-likelihood as a function of 

the iteration count in training
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Logistic Regression: Example

x1

x2

L1

L2

x1

x2

Two classes, two features: non-linearly separable case 

Feature space transformation: the classes can be separated

Training samples in 

feature space (800)

Regions assigned to the two classes 

in feature space

L1

L2

28



Institute of Photogrammetry and GeoInformation

Logistic Regression: Example

Two classes, two features: non-linear separated case with 

characteristic spatial transformation

p(C=L1|x1,x2)

white ... high probability, 

black ... low probability

p(C=L2|x1,x2)

• Significant differences in the posterior probabilities

• Low value for E(w) is reached

Iteration

E
(w

)

log-likelihood as a function of 

the iteration count in training
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Transition to Multi-class Problems

• The posterior probability p(C=Lk | x) for each class Lk can be 

modelled using the softmax function: 

with ak(x) = ln [p(x | C=Lk)] + ln [p(C=Lk)]

• Assumptions about p(x | C=Lk) and p(C=Lk) lead to models for ak(x)

• Again, feature space mapping can help to obtain linear models:

ak(x) = ak(F(x)) = wk
T · F(x)

• In training, one parameter vector wk per class has to be determined

• Softmax function: 

p(C=Lk|x) = 
exp [ak(x)]

S exp [aj(x)]
j
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Multi-class Logistic Regression: Training

• Training: class label Cn is given for each training point xn

• Maximum Likelihood training is similar to the two-class case: the  

negative log-likelihood has to be minimized:

with the binary indicator variables

M… number of classes

• Again, the the Newton-Raphson can be applies: Using the current 

values wt-1 from the previous iteration, the weights are updated 

according to

   
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1 1
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if C L
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Multi-class Logistic Regression: Maximum 

Likelihood Training

• The parameter vectors are not independent 

 One parameter vector must be declared to be constant, 

e.g. w1
T = (0, ... 0) T

• w1 is not changed in the optimization procedure 

 The parameter vector w to be determined if M classes are to be 

discerned becomes: w = (w2
T, ..., wM

T)T

• Gradient of the negative log-likelihood

(Derivative of E by the weight vector of the class j):

• Total gradient vector : 
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Multi-class Logistic Regression: Maximum 

Likelihood Training

33

• Again, the gradient can be interpreted as the sum of the (transformed) 

feature vectors weighted by the “classification error” (ynj – tnj)

• Hesse matrix H also consists of several components :

Ikj … Elements of a unit matrix

• Regularisation: As in the binary case (Gaussian prior with 

expectation 0 and Covariance s ∙ I
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Multi-class Case: Example (ML-Training)

x1

x2

L1

L2

x1

x2

Four classes, two features

Training samples in 

feature space (800)

Regions assigned to the four classes 

in feature space

L3

L4
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Multi-class Case: Example (ML-Training)

Four classes, two features: posterior probabilities

p(C=L1|x1,x2)

white... high probability, black ... low probability

p(C=L2|x1,x2)

In the areas where the feature distributions overlap, the boundaries 

are slightly blurred

p(C=L3|x1,x2) p(C=L4|x1,x2)
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Multi-class Case: Example (ML-Training)

Four classes, two features: 

Development of the log-likelihood during training

Iteration

E
(w

)
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Multi-class Case: Example (ML-Training)

x1

x2

L1

L2

x1

x2

Three classes, two features, not linearly separable 

no feature space mapping

Training samples in 

feature space (800)

Regions assigned to the three classes 

in feature space

L3

L3
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Multi-class Case: Example (ML-Training)

Three classes, two features, not linearly separable, no feature space 

mapping: development of log-likelihood during training

Iteration

E
(w

)
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Multi-class Case: Example (ML-Training)

x1

x2

L1

L2

x1

x2

Three classes, two features, not linearly separable –

quadratic expansion

Training samples in 

feature space (800)

Regions assigned to the three classes 

in feature space

L3

L3
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Multi-class Case: Example (ML-Training)

Three classes, two features, not linearly separable –

quadratic expansion:  posterior probabilities

p(C=L1|x1,x2)

white ... high probabilitiy, black ... low probability

p(C=L2|x1,x2)

• In the areas where the feature distributions overlap, the boundaries 

are slightly blurred

• However, in general there is a very clear distinction  Overfitting

p(C=L3|x1,x2)
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Multi-class Case: Example (ML-Training)

Three classes, two features, not linearly separable –

quadratic expansion: development of log-likelihood during training

Iteration

E
(w

)
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Multi-class Case: Example (ML-Training)

x1

x2

L1

L2

x1

x2

Three classes, two features, not linearly separable – quadratic 

expansion, training with relatively strong regularization (s = 2)

Training samples in 

feature space (800)

Regions assigned to the three classes 

in feature space

L3

L3
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Multi-class Case: Example (ML-Training)

Three classes, two features, not linearly separable – quadratic 

expansion, training with regularization: posterior probabilities

p(C=L1|x1,x2)

white ... high probability, black ... low probability

p(C=L2|x1,x2)

• Much smoother transitions, uncertainty of the classification is better 

represented

• Class boundaries may be regularized too strongly

p(C=L3|x1,x2)
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Discussion

• Discriminative probabilistic methods directly model the

posterior probability

– No assumption about the distribution of data required

– Basically, boundaries between classes are learned

– Linear Models with / without feature space transformation

 Fewer parameters to be determined

 Fewer training data is required

– Can be expanded to multi-class problems(model posterior 

probability using softmax function)

– Efficient learning / classification

– Probabilistic output simplifies further processing
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Discussion

• Despite feature space transformation, the functional model cannot fit 

properly to the distribution of the data

 Transition to non-probabilistic methods

• High-dimensional feature vectors can lead to a large number of  

parameters to be learned

• Numerical problems  scaling of the features in training and during 

the classification

• ML-Learning: Problem of overfitting  Regularisation

– Requires prior for the parameter vector w

 Hyper-parameter s (cross validation)
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