Random Forest

a non-probabilistic discriminative classifier

Contents

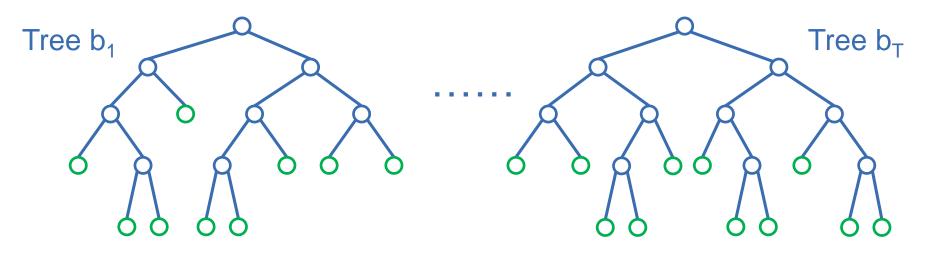
- Bootstrapping
- Random Forests
- Discussion
- Application example

Bootstrapping

- Original question: how to determine an accuracy measure for a classifier if only (relatively) few training data are available?
- Generation of bootstrap data sets:
 - Out of N samples \mathbf{x}_n of the training data set, $N_1 < N$ samples are selected randomly
 - This is done with replacement, i.e. a point x_n may be included several times in the bootstrap data set
 - An certain number *B* of these boostrap data sets is generated.
 These data sets are considered to be independent
 - The classifier is trained using each data set
 - Uncertainty measure, derived from the variation of the results

Application of the Bootstrap Principle

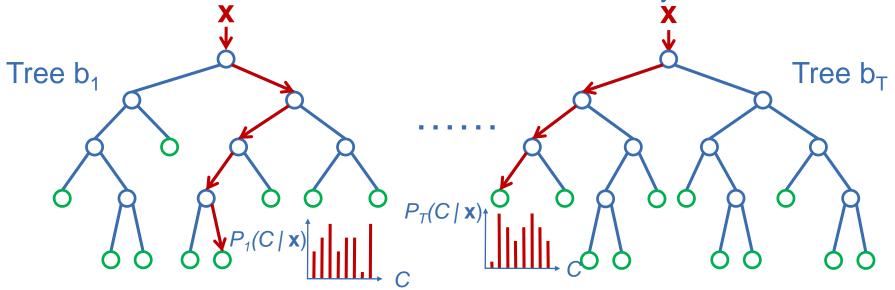
- Using of bootstrap data sets for classification
 → Bagging (Bootstrap AGGregatING):
 - Training:
 - Generate B bootstrap data sets
 - > Each data set b is used to train a classifier $f_b(\mathbf{x})$
 - Classification:
 - > For each classifier f_b : Determine result $C_b = f_b(\mathbf{x})$
 - Result: The class that gets the highest number of "votes"


Application of the Bootstrap Principle

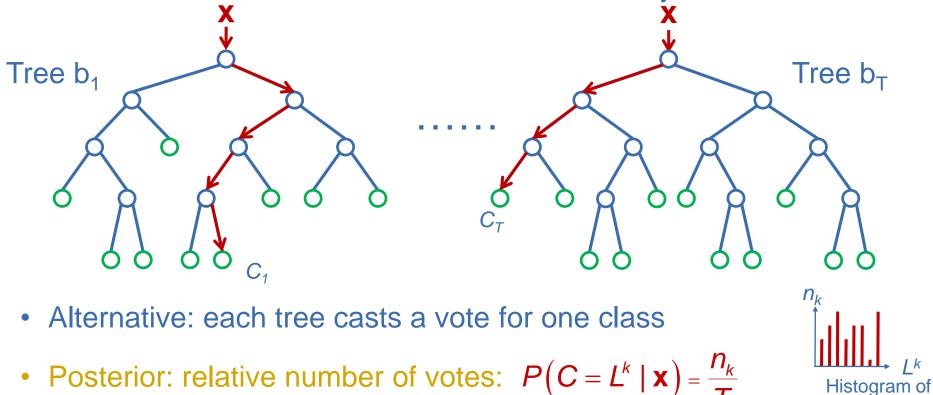
- Bagging can be applied to any classifier (... but for some it might not make much sense)
- However, the classifiers f_b usually are of the same type
- Bagging can improve results of unstable classifiers
- CART are "unstable" in the sense that small changes in the input data may lead to major changes in the class boundaries
- Bootstrapping for CART → Random Forests

Random Forests

- A Random Forest [Breiman, 2001] consists of *T* decision trees (CART)
- Classification: A feature vector **x** is classified by each tree



Random Forests


- A Random Forest [Breiman, 2001] consists of *T* decision trees (CART)
- Classification: A feature vector **x** is classified by each tree

- In every tree t. posterior distribution $P_t(C \mid \mathbf{x})$ according to tree t
- Posterior: average probability: $P(C | \mathbf{x}) = \frac{1}{\tau} \cdot \sum_{t=1}^{T} P_t(C | \mathbf{x})$

Random Forests

- A Random Forest [Breiman, 2001] consists of *T* decision trees (CART)
- Classification: A feature vector **x** is classified by each tree

• Posterior: relative number of votes: $P(C = L^k | \mathbf{x}) = \frac{n_k}{\tau}$

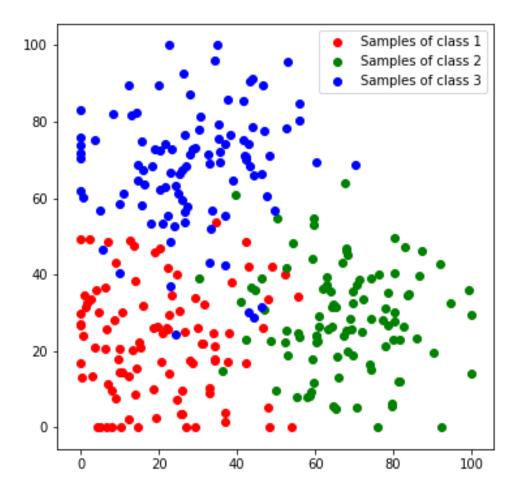
votes

eibniz

Iniversität

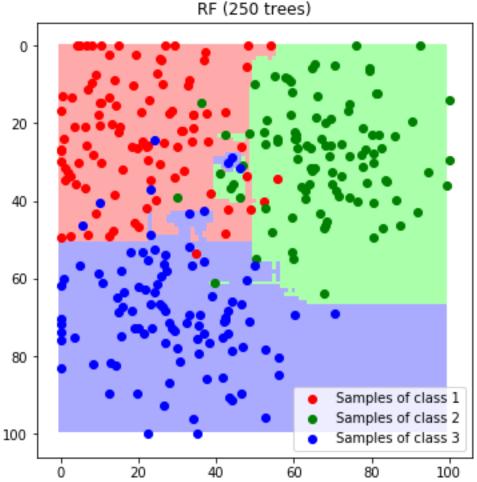
lannover

Training for Random Forests


- Generation of *T* bootstrap data sets (e.g. T = 50)
- Using each data set *t* one tree *b*_{*t*} is trained (cf. CART training)
- Important: Independent and random selection of the bootstrap data sets
- Due to the combination of several trees :
 - Better generalization
 - Better stability
- Can be parallelised easily due to the independence of the bootstrap data sets and the trees.

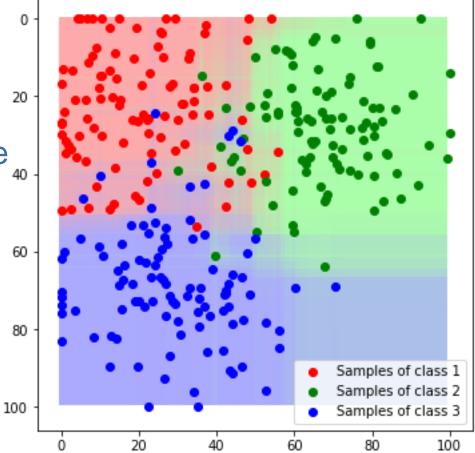
Example

Example with three classes and two features



Example

- Depth of 7
- Completed feature space is visualized with final class label 20
- Classification result after combing 250 trees
- No strong overfitting



11

Example

- Classification result after combing 100 trees
- The completed feature space is visualized with the predicted probabilities
- Good decision boundaries

12

lil Leibniz 102 Universität 1004 Hannover

Random Forests: Discussion

- Random forests are considered to be one of the best local classifiers today
- Similar quality to the results as SVM, but much faster
- Training and classification can be parallelized easily
- Can be applied to multi-class problems by design
- Probabilistic interpretation of the outputs → can be used in subsequent processing steps
- Random forests may consume a lot of memory
- There are implementations in Matlab, openCV, ...

Random Forests: Application Examples

- Classification of aerial images and DSM [Schindler, 2012]
- Matching of SIFT features by classification [Lepetit et al., 2006]
- Classification of laser scanner data [Niemeyer et al., 2013]
 - Features: Height above ground, local distribution of points, fullwaveform features
 - Classification of each individual point with RF

