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Support Vector Machines: Principle

 Binary classification : C e {-1, +1}

« Search for hyperplane ¢ in feature space that
seperates the classes in the training data:
eewl-x+b=0

w: hormal vector

b: constant term
* Training: find w, b
« Classification: C =sign (w' - X + b)

« But: Which is the best hyper level for given training data?
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Support Vector Machines: Principle

There are many possible hyperplanes...
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Support Vector Machines: Principle

« Margin: Region near the hyperplane without training data
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Support Vector Machines: Principle

« Maximum margin principle: D, Support vectors
Determine ¢ so that the distance dg,, |
of ¢ to the nearest training sample
IS maximized [Vapnik, 1998]

— answer the question: Which is
the best hyper level

* The points with distance d,, of € are
called Support Vectors (SV)

* Result depends on SVs only

« But: before training one does not know which samples are SVs
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Support Vector Machines: Hyperplane

* Feature Space Mapping ®(x) if the @,
classes are not linearly separable

 Binary classification: class C e {-1, +1}

« Hyperplane in the transformed feature
space:

eewWl-dXxX)+b=0

 Distance d, of a point ®(x,,) from &:

d,= [[ 1/ ]w][ - [w" - @(x,) + b] ||
 Distance of the plane from the origin: b / ||w]|

* The length of w is undefined - How to scale w?
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Support Vector Machines: Margin

« Scaling of w so that

w' - ®d(x,) + b =1=1for SVs

- Margin is limited by two planes ¢4, €,
which are parallel to € (same normal w)

g -WT-®(x,)+b=+1

g, WT-®D(x,)+b=-1

or
g.-WTh-®(x,)+b-1=0
&, W -®D(X,)+b+1=0
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Support Vector Machines: Margin Width

 Distances of the planes ¢, ¢, from
the origin O:

— g WT-®(x,)+b-1=0

d(&,0)= m

— W -P(Xx,)+b+1=0

b+1
d(e,,0)=——
(220 Vil c=1 ® "%
0 1
 Distance between the two planes: width of the margin 2 - dg,
b+1 b-1 2
2-dg, =d(¢,,0)—-d(&,0)= - -
R S wl wl e w
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Support Vector Machines: Maximum Margin
Criterion

» Result: If we scale w as defined on the
previous slides, maximising the margin
IS equivalent to

« Without considering the training data,
this would resultinw =0

* To obtain a meaningful solution, we
have to introduce constraints for the
training data!
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Support Vector Machines: Constraints

» Constraints for feature vectors x,
with class C,, = +1.:

— SVs are on plane g,
>w'-®(x,)+b=+1

— All other points have to be on the
side of ¢, indicated by the direction
of w (because they have to be
classified correctly!)

> wh-®(x,)+b>+1
— Consequently: w'-®(x,) +b> +1forC, =+1

«  Similarly: wh-®(x,)+b< -1 forC, =-1
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Support Vector Machines: Constraints

« Constraints:
wh - ®(x,)+b> +1forC, =+1
wh-®(x,)+b=< -1 forC, =-1

 Multiplication of these inequalities by C,
yields a uniform representation for the
constraints:

C,-[wh ®d(x,)+b]> 1 Vx,

« The identity applies to the support vectors
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Support Vector Machines: Training

We want to maximize the margin separating the training data given
the constraints introduced by the training samples, thus

subjectto C,- [wT - ®(x,) + b] > 1 V x,
This is mathematically difficult

We solve the equivalent problem: %2 - ||[w][]? =% - wT - w = min
subject to the same constraints

Optimization with inequalities as constraints

- Lagrange multipliers «, > 0 (one for each training sample),
training data comes to play in the process of searching for best
hyperplane via Lagrange multipliers

iﬁ Institute of Photogrammetry and Geolnformation




Support Vector Machines: Training

* New objective function to be minimized subjectto ¢, >0 V X,
Lw,b,a)=% -wl-w—-2 ¢, -{C,-[w' ®X,)+b]-1}

* Derivatives: dL/dw =w -X ¢, - C, - ®(X,,)
dL/db =-Z% ¢, - C,

dL/dw =0 >wW=2Xgq, - C, ®X,)
dL/db=0 2> Xa,-C,=0
 Substituting this result in L leads to a new objective function :
Za)=2a,—% -2 a, - a, C,-C., - DX,)" - ®(X;,) > min

with additional constraints : ¢, >0 and X «,- C, =0
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Support Vector Machines: Kernel Trick

« Kernel trick: Substitution of ®(x,)" - ®(x,,) by Kernel function
K(Xn’ Xm) = (I)(Xn)T ' (I)(Xm)
« Examples:
— Gaussian Kernel (also called “Radial Basis Function®, RBF):

_(Xn_xm)2

KRBF (Xn’Xm) —e 27

— Polynomial Kernel:

Kooy (Xp: X ) =(8-X7 X, + r)OI
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Support Vector Machines: Kernel Trick

« Advantages of applying the Kernel trick:
— No need to define a Feature Space Mapping ®(x)
— No need to explicitly calculate ®(x) or ®(x,)" - ®(x,,)

— The feature space mapping is carried out implicitly by applying
the kernel function to substitute for the inner product

— Implicitly, one can work in very high-dimensional feature
spaces without the additional computational burden

- SVM can (in principle) deal with an arbitrary number of
clusters per class in feature space!
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Support Vector Machines: Training

 Substituting the kernel function for the inner product we get:
Zo) =2 a,—Y2 22X o, oy C,- Cp,, - KX, Xp) = MiN
with the constraints: ¢, >0 and X «,- C, =0

* Minimizing of Z(a) with consideration of constraints leads to a
guadratic optimization problem [Vapnik, 1998]

* The parameters to be determined are the Lagrange factors «,
« Support Vectors: training samples x, with ¢, > 0 !!

* The result of training is the Lagrange factors and the parameter b!
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Support Vector Machines: Training

» Determination of b from Support Vectors and «, :

— Constraints for SV: Cq,, - [WT - ®(Xg,) +b] =1

—Usingw =X ¢, - C, - ®(X,)
2Cqy [Za,-C, - ®X,)" - DP(Xg) +b]=1

— Again: apply the Kernel function K(x,, X.,)
> Csv - [Z oy - G- KXy, Xgy) +B] =1

— There is one such equation for b per support vector
- b is calculated from each support vector once

—> Final value for b by averaging
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Support Vector Machines: Classification

« Classification: The class C for a feature vector x results from the
sign of wT - @(x) + b:

C =sign[w™ - ®(x) + b] =sign[X a, - C, - ®(X,)T - ®(X) + b]
 Again, the Kernel trick works: C = sign[X «, - C,, - K(X,, X) + b]

* The sum only needs to be taken over SVs (because for all
other training data «, Is O, can be used inversely!)

 Transition to high dimensional feature space

—> Can deliver non-linear boundaries in ®
the original feature space @

iﬁ Institute of Photogrammetry and Geolnformation



Support Vector Machines: Overfitting

« SVM can potentially separate all possible configurations of points
* Danger:

— Overfitting

— Complex models requiring
too many parameters
(= many SVs)

- Expansion of the model!

Very unlikely shape of the decision boundary
—> Stronger generalisation is desired
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SVM with Errors in the Training Data

edge of margin
* Introduction of a slack variable & > 0 for '
every training sample with:

» & = 0: Samples at the edge of the margin
or in the region assigned to C,

» & =1: Samples on ¢
» & < 1: Sample in the margin but on the correct side of.g

» & > 1: Samples on the wrong side of g, I.e. training samples
having a wrong class label

— For points inside the margin or on the wrong side of g, this
definition implies & =|C,— (w' - ®(x,) + b) |

iﬁ Institute of Photogrammetry and Geolnformation



SVM with Errors in the Training Data

« Using these slack variables, the constraints become
Cph-[Ww'-®@kx,)+b] 21 - ¢,

« Cost P > 0O for samples with & > 0 - penalise occurrence of too
many outliers

« New objective function: P - X & + % - ||[w|[? = min

with constraints & >0
Cn ' [WT'(I)(Xn)+b] Zl_én

« Lagrange multipliers e, >0 and p, >0

* Objective function to be minimized:
L(w,b,a,p) =% -wl-w+P-2&
-2 Oy - {Cn | [WT | (I)(Xn)+b]_1+ gn}_z:/un ' én
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SVM with Errors in the Training Data

« Again, we determine the first derivatives of the objective function by
w, b and &, and set them to zero, which leads to:

w=22gq, - C, O,
2a,-C, =0
Hn=P - o
 Substitution of these results in L(w, b, a, p):
Zl) =2 a,-% - 22 a, a,  C,-C., - K(X,,X,) > min
with constraints: 0 < ¢, <Pand X «,- C,=0
« Only difference to the case without slack variables:

— Lagrange factors «, also have to be <P
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SVM with Errors in the Training Data

» Solution for the factors «, by quadratic optimization

* Interpretation of «,:
— Samples with «, = 0 do not contribute to the classification
— Samples with ¢, > 0: Support Vectors

> «, < P:these samples are situated exactly at the edge of
the margin, i.e. £, =0

» o, = P are located inside the margin or outside of the
margin on the wrong side of &.

» Calculation of b: only from support vectors with 0 < ¢, <P

- Classification : analogous to the case without error in training data
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SVM: Expansion to more than Two Classes

« SVM solves a binary problem
* There is no straight-forward expansion to the multi-class case
« Transition to more than two classes: “one against the rest*

— For all classes L%: Determine g, so that all classes but L* provide
the negative examples

— Leads to N, binary classifiers
— Classification :

» Classify on the basis of all hyperplanes g,

» Problem: ambiguities!
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SVM: Expansion to More than Two Classes

* Transition to more than two classes: “one against one“

- For all pairs of classes L, L*: Determine ¢, from the training data of
both classes

— For N_ classes > N. - (N.-1)/2 SVM classifiers!
— Classification:
» Classify on the basis of all hyperplanes &,

> Count the votes for each class L' and select the class
receiving the largest number of votes

— Takes longer in classification and training, can be parallelized

— Ambiguities still exist, but they occur less frequently

26
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Parameters

For SVM, there are two groups of parameters that are not
determined in the training procedure:

1) Parameters of the kernel function (Gaussian kernel:

2) Penalty term P

These parameters are often specified by the user

They should also be determined from the training data

Approach : Grid search with cross-validation

27
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Grid Search with Cross-Validation

 |In the parameter space all integer values for log ¥

log P or log ¥ are investigated,
e.g. between -15 and15

* For every value pair, a SVM is learned from o1 > log P
the training data

 Cross-validation:

— SVM is only trained using a part of the training data

— From the rest of the training data, the training error is determined
(number of training samples assigned to the wrong class)

» Result: The value pair for P, ¥ for which the training error is minimal

— Can be refined locally
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Grid Search with Cross-Validation: Example

c10_g0001.png c10_g001.png c10_g01.png c10_g10.png c10_g100.png c10_g1000.png ©10_g10000.png

c100_g0001.png ¢100_g001.png c100_g c100_g10.png c100_g100.png c100_g1000.png ¢100_g10000.png

c1000_g0001 png c1000_g001.png c1000_g01.png c1000_g1.png c1000_g10.png c1000_g100.png c1000_g1000.png c1000_g10000.png

£10000_g001 png ¢10000_g01 p £10000_g10 png ¢10000_g100 1 £10000_a1000 p £10000_g10000.png

c100000_g0001.png c100000_go0 c100000_g01.png c100000_¢ ng c100000_g c100000_g100.png c100000_g1000.png  c100000_g1000C

¢1000000_g0001 png  ¢1000000_g001.png ¢1000000_go g £1000000_g1.png ¢1000000_g10.png ¢1000000_g100.png  ¢1000000_g1000.p c1000000_g10000.png

> y=1/20 72
Created using the tool on http://www.csie.ntu.edu.tw/~cjlin/libsvm/

l { § Leibniz
{ 0, 2 | Universitat
too:4 | Hannover

iﬁ Institute of Photogrammetry and Geolnformation 29



Probabilities

« SVM provides no probabilities
 Classification for SVM:
C =sign[2 «a, - C,, - K(x,,, X) + b] = sign[f(x)]

» The function f(x) depends on the distance d of ®(x) from the
decision boundary: f(x) = d - || w ]

* Note that d is a signed distance: C = sign(d)

 Remember: For logistic regression, the posterior probablity was
determined as o(d - || w [|)

(o : logistic Sigmoid function)
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Probabilities

« f(x) Is a new feature and becomes an argument for the sigmoid
function

« But we have to perform a linear transformation (because [|w|| is not
known)

 Thus P(C=1|X):O'(A-f(x)+|3): 1

14 e—(A-f(x)+B)

* The parameters A, B are learned from training data

 For that purpose, one must use training samples that are not used
to train the SVM

—> Again, the training data are divided into two groups

Training: see logistic regression
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Data set with 3 classes

Examples
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Examples

SVM trained with 0-
gamma = 1.0
L
. . 20 1
Weak regularization
L
Results in a strongly 0] 1
overfitted model
.m i
m -
& Samples of class 1
& Samples of class 2
100 A ® Samples of class 3
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Examples

SVM trained with 0
gamma = 0.01

A lower coefficient leadsto 2]

a stronger regularization u
&
..:“] u
Here this leads to a much
better model
m u

In general the
hyperparameters should a0 -
be optimized e.g. in a grid
search

& Samples of class 1
& Samples of class 2

100 ® Samples of class 3
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Support Vector Machines: Discussion

« SVM with Gauss-Kernel and slack variables provide good results
« SVM often serve as a baseline for comparison with other procedures
« Parameters of the kernel function and P must be determined

« Both of these parameters affect the smoothing of the decision
boundary

e Problems of SVM:
— The transition to more than two classes not obvious
— Derivation of a quality indicator for the result

— SVM is slow compared to Random Forests, especially during
training
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