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Support Vector Machines: Principle

• Binary classification : C  {-1, +1}

• Search for hyperplane e in feature space that 

seperates the classes in the training data:

e: wT · x + b = 0

w: normal vector

b: constant term

• Training: find w, b

• Classification: C = sign (wT · x + b)

• But: Which is the best hyper level for given training data? 

e

w

C = +1 

C = -1 



Institute of Photogrammetry and GeoInformation

Support Vector Machines: Principle

There are many possible hyperplanes…
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Support Vector Machines: Principle

• Margin: Region near the hyperplane without training data

e
C = +1 

C = -1 

eC = +1 

C = -1 

e

C = +1 

C = -1 e

C = +1 

C = -1 



Institute of Photogrammetry and GeoInformation

Support Vector Machines: Principle

• Maximum margin principle: 

Determine e so that the distance dSV

of e to the nearest training sample 

is maximized [Vapnik, 1998]

answer the question: Which is                                            

the best hyper level 

• The points with distance dSV of e are 

called Support Vectors (SV)

• Result depends on SVs only

• But: before training one does not know which samples are SVs
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• Feature Space Mapping F(x) if the                                               

classes are not linearly separable

• Binary classification: class C  {-1, +1}

• Hyperplane in the transformed feature 

space:

e: wT · F(x) + b = 0

• Distance dn of a point F(xn) from e:

dn =  || 1/ ||w|| · [wT · F(xn) + b] ||

• Distance of the plane from the origin: b / ||w|| 

• The length of w is undefined  How to scale w? 

Support Vector Machines: Hyperplane
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Support Vector Machines: Margin

• Scaling of w so that

wT · F(xn) + b = ±1 for SVs 

• Margin is limited by two planes e1, e2

which are parallel to e (same normal w)

e1 : w
T · F(xn) + b = +1

e2 : w
T · F(xn) + b = -1

or 

e1 : w
T · F(xn) + b - 1 = 0

e2 : w
T · F(xn) + b + 1 = 0
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Support Vector Machines: Margin Width

• Distances of the planes e1, e2 from

the origin 0: 

– e1 : w
T · F(xn) + b - 1 = 0

– e2 : w
T · F(xn) + b + 1 = 0

• Distance between the two planes: width of the margin 2 · dSV 
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Support Vector Machines: Maximum Margin 

Criterion
• Result: If we scale w as defined on the 

previous slides, maximising the margin 

is equivalent to

• Without considering the training data,

this would result in w = 0

• To obtain a meaningful solution, we

have to introduce constraints for the 

training data! 
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Support Vector Machines: Constraints

• Constraints for feature vectors xn

with class Cn = +1: 

– SVs are on plane e1

 wT · F(xn) + b = +1

– All other points have to be on the

side of e1 indicated by the direction

of w (because they have to be

classified correctly!)

 wT · F(xn) + b > +1

– Consequently: wT · F(xn) + b  +1 for Cn = +1

• Similarly: wT · F(xn) + b ≤  -1  for Cn = -1
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Support Vector Machines: Constraints

• Constraints: 

wT · F(xn) + b  +1 for Cn = +1

wT · F(xn) + b ≤  -1  for Cn = -1

• Multiplication of these inequalities by Cn 

yields a uniform representation for the 

constraints:  

Cn · [w
T · F(xn) + b]  1   xn

• The identity applies to the support vectors
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Support Vector Machines: Training

• We want to maximize the margin separating the training data given 

the constraints introduced by the training samples, thus

subject to Cn · [w
T · F(xn) + b]  1   xn

• This is mathematically difficult

• We solve the equivalent problem: ½ · ||w||2 = ½ · wT · w  min 

subject to the same constraints

• Optimization with inequalities as constraints

 Lagrange multipliers an  0 (one for each training sample), 

training data comes to play in the process of searching for best 

hyperplane via Lagrange multipliers 
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Support Vector Machines: Training

• New objective function to be minimized subject to an  0   xn: 

L(w, b, a) = ½ · wT · w – S an · {Cn · [wT · F(xn) + b] – 1}

• Derivatives:  dL / dw = w - S an · Cn · F(xn)

dL / db = – S an · Cn

dL / dw = 0  w = S an · Cn · F(xn)

dL / db = 0  S an · Cn = 0 

• Substituting this result in L leads to a new objective  function :

Z(a) = S an – ½ · S S an · am · Cn · Cm · F(xn)
T · F(xm)  min

with additional constraints : an  0 and S an · Cn = 0
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Support Vector Machines: Kernel Trick

• Kernel trick: Substitution of F(xn)
T · F(xm) by Kernel function

K(xn, xm) = F(xn)
T · F(xm)

• Examples: 

– Gaussian Kernel (also called “Radial Basis Function“, RBF): 

– Polynomial Kernel: 
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Support Vector Machines: Kernel Trick

• Advantages of applying the Kernel trick: 

– No need to define a Feature Space Mapping F(x) 

– No need to explicitly calculate F(x) or F(xn)
T · F(xm) 

– The feature space mapping is carried out implicitly by applying 

the kernel function to substitute for the inner product

– Implicitly, one can work in  very high-dimensional feature 

spaces without the additional computational burden

 SVM can (in principle) deal with an arbitrary number of 

clusters per class in feature space! 
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Support Vector Machines: Training

• Substituting the kernel function for the inner product we get:

Z(a) = S an – ½ · S S an · am · Cn · Cm · K(xn, xm)  min

with the constraints: an  0 and S an · Cn = 0

• Minimizing of Z(a) with consideration of constraints leads to a 

quadratic optimization problem [Vapnik, 1998]

• The parameters to be determined are the Lagrange factors an

• Support Vectors: training samples xn with an > 0 !!

• The result of training is the Lagrange factors and the parameter b!  
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Support Vector Machines: Training

• Determination of b from Support Vectors and an :

– Constraints for SV: CSV · [wT · F(xSV) + b ] = 1

– Using w = S an · Cn · F(xn)

 CSV · [S an · Cn · F(xn)
T · F(xSV) + b ] = 1

– Again: apply the Kernel function K(xn, xm) 

 CSV · [S an · Cn · K(xn, xSV) + b ] = 1

 There is one such equation for b per support vector 

 b is calculated from each support vector once

 Final value for b by averaging
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Support Vector Machines: Classification

• Classification: The class C for a feature vector x results from the 

sign of wT · F(x) + b:

C = sign[wT · F(x) + b] = sign[S an · Cn · F(xn)
T · F(x) + b]

• Again, the Kernel trick works: C = sign[S an · Cn · K(xn, x) + b]

• The sum only needs to be taken over SVs (because for all 

other training data an is 0, can be used inversely!)

• Transition to high dimensional feature space

 Can deliver non-linear boundaries in

the original feature space

e
C = +1 

C = -1 
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Support Vector Machines: Overfitting

• SVM can potentially separate all possible configurations of points

• Danger: 

– Overfitting

– Complex models requiring

too many parameters

( many SVs)

 Expansion of the model! 

C = -1 

C = +1 

e

Very unlikely shape of the decision boundary

 Stronger generalisation is desired
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SVM with Errors in the Training Data

• Introduction of a slack variable xn  0 for

every training sample with:

 xn = 0: Samples at the edge of the margin

or in the region assigned to Cn

 xn = 1: Samples on e

 xn < 1: Sample in the margin but on the correct side of e

 xn > 1: Samples on the wrong side of e, i.e. training samples

having a wrong class label

– For points inside the margin or on the wrong side of e, this 

definition implies  xn = |Cn – (wT · F(xn) + b) |

e

edge of margin
C = +1 

C = -1 

x = 1 

x = 0 

x > 1 x < 1 
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• Using these slack variables, the constraints become 

Cn · [wT · F(xn) + b ]   1 - xn

• Cost P > 0 for samples with xn > 0  penalise occurrence of too 

many outliers

• New objective function: P · S xn + ½ · ||w||2  min 

with constraints xn   0 

Cn · [wT · F(xn) + b ]   1 – xn

• Lagrange multipliers an  0 and mn  0

• Objective function to be minimized: 

L(w, b, a, m) = ½ · wT · w + P · S xn

– S an · {Cn · [wT · F(xn) + b] – 1 + xn} – S mn · xn

SVM with Errors in the Training Data
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• Again, we determine the first derivatives of the objective function by 

w, b and xn and set them to zero, which leads to: 

w = S an · Cn · F(xn)

S an · Cn = 0 

mn = P - an

• Substitution of these results in L(w, b, a, m):

Z(a) = S an – ½ · S S an · am · Cn · Cm · K(xn, xm)  min

with constraints: 0 ≤ an ≤ P and S an · Cn = 0

• Only difference to the case without slack variables: 

– Lagrange factors an also have to be ≤ P

SVM with Errors in the Training Data
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• Solution for the factors an by quadratic optimization

• Interpretation of an:

– Samples with an = 0 do not contribute to the classification

– Samples with an > 0: Support Vectors

 an < P: these samples are situated exactly at the edge of 

the margin, i.e. xn = 0

 an = P are located inside the margin or outside of the 

margin on the wrong side of e. 

• Calculation of b: only from support vectors with 0 < an < P

• Classification : analogous to the case without error in training data

SVM with Errors in the Training Data
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• SVM solves a binary problem

• There is no straight-forward expansion to the multi-class case

• Transition to more than two classes: “one against the rest“

– For all classes Lk: Determine ek so that all classes but Lk provide 

the negative examples

– Leads to Nc binary classifiers

– Classification : 

 Classify on the basis of all hyperplanes ek

 Problem: ambiguities! 

SVM: Expansion to more than Two Classes
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• Transition to more than two classes: “one against one“

• For all pairs of classes Lj, Lk : Determine ejk from the training data of 

both classes

– For Nc classes  Nc · (Nc - 1) / 2  SVM classifiers!

– Classification:

Classify on the basis of all hyperplanes ejk

Count the votes for each class Li and select the class 

receiving the largest number of votes

 Takes longer in classification and training, can be parallelized

 Ambiguities still exist, but they occur less frequently

SVM: Expansion to More than Two Classes
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• For SVM, there are two groups of parameters that are not 

determined in the training procedure:

1) Parameters of the kernel function (Gaussian kernel: 

g = ½ ·  -2)

2) Penalty term P

• These parameters are often specified by the user

• They should also be determined from the training data

• Approach : Grid search with cross-validation

Parameters
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• In the parameter space all integer values for                                     

log P or log g are investigated, 

e.g. between -15 and15

• For every value pair, a SVM is learned from 

the training data

• Cross-validation: 

– SVM is only trained using a part of the training data

– From the rest of the training data, the training error is determined 

(number of training samples assigned to the wrong class)

• Result: The value pair for P, g for which the training error is minimal

– Can be refined locally

Grid Search with Cross-Validation

log P

log g

10
1
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Created using the tool on http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Grid Search with Cross-Validation: Example

P

g =1/2 -2
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Probabilities

• SVM provides no probabilities

• Classification for SVM:  

C = sign[S an · Cn · K(xn, x) + b] = sign[f(x)]

• The function f(x) depends on the distance d of F(x) from the   

decision boundary: f(x) = d · || w ||

• Note that d ís a signed distance: C = sign(d) 

• Remember: For logistic regression, the posterior probablity was 

determined as  (d · || w ||) 

( : logistic Sigmoid function)
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Probabilities

• f(x) is a new feature and becomes an argument for the sigmoid 

function

• But we have to perform a linear transformation (because ||w|| is not 

known)

• Thus

• The parameters A, B are learned from training data

• For that purpose, one must use training samples that are not used 

to train the SVM

 Again, the training data are divided into two groups

Training: see logistic regression
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Examples

32

• Data set with 3 classes
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Examples
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• SVM trained with

gamma = 1.0

• Weak regularization

• Results in a strongly 

overfitted model
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Examples

34

• SVM trained with

gamma = 0.01

• A lower coefficient leads to 

a stronger regularization

• Here this leads to a much

better model

• In general the

hyperparameters should

be optimized e.g. in a grid

search



Institute of Photogrammetry and GeoInformation

Support Vector Machines: Discussion

• SVM with Gauss-Kernel and slack variables provide good results

• SVM often serve as a baseline for comparison with other procedures

• Parameters of the kernel function and P must be determined

• Both of these parameters affect the smoothing of the decision 

boundary

• Problems of SVM:

– The transition to more than two classes not obvious

– Derivation of a quality indicator for the result

– SVM is slow compared to Random Forests, especially during 

training
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