
1

www.martinwerner.de
Martin Werner

www.martinwerner.de

Deep Learning

with applications to point clouds

2

www.martinwerner.de

Outline

 A Short History of Deep Learning

 Deep Learning Elements

 Neurons

 Neural Networks

 Back Propagation and Gradient Descent

 Some Basic Deep Learning Architectures

 Dealing with Point Clouds

 And now? How would I?

3

www.martinwerner.de
Martin Werner

www.martinwerner.de

A Short History of Deep Learning

4

www.martinwerner.de

History of Deep Learning

https://pbs.twimg.com/media/DuE4LnRWs
AEpHjQ.jpg:large

5

www.martinwerner.de

History of Deep Learning

 Nothing of this is really new. It is an old and established discipline.

 The current hype comes from several factors

 Advances in computational performances (GPUs, TPUs)

 Creation of Huge Datasets

 (Smaller) Advances in Stochastic Gradient Decent

 Novel Ideas about Regularization

 Novel Ideas for Capacity (Weight) Reduction

 Convolutional Neural Networks

 But, Deep Learning is not very powerful per se:

 Energy Consumption

 Dataset Creation Cost

 Performance of the Deployed System

 Understandability and Certification of Systems

6

www.martinwerner.de
Martin Werner

www.martinwerner.de

Deep Learning Elements

7

www.martinwerner.de
Martin Werner

www.martinwerner.de

Neurons and Neural Networks

8

www.martinwerner.de

Biology-Inspired but simplified

S

Input 1 Input N

w1 wN

Activation

CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.p
hp?curid=1474927

9

www.martinwerner.de

Linear Neuron

The simplest Neuron is a linear one.

This means

 Activation Function is linear

 A bias term is added

 Then, we can write the output as

෍

𝑖=1..𝑁

𝜔𝑖𝑥𝑖 + 𝑏

 For simplicity, the bias is often made
an artifical input to the system such
that it reads even simpler (w_0 = 1,
x_0 = b)

෍

𝑖=0..𝑁

𝜔𝑖𝑥𝑖

S

Input 1 Input N

w1 wN

Activation

10

www.martinwerner.de

Let us learn something

 Lets assume two inputs to the neuron and f(x)=y the activation
function.

 Question: What can we represent in this way:

 Answer: Lets calculate a bit (with explicit bias)

෍

𝑖

𝜔𝑖 + 𝑏 = 𝜔1𝑥1 + 𝜔2𝑥2 + 𝑏

 Now, for binary classification, we need a simple decision rule. What
about (output > 0)

 Then, we can learn sets that have the structure

෍

𝑖

𝜔𝑖 + 𝑏 = 𝜔1𝑥1 + 𝜔2𝑥2 + 𝑏 ≥ 0

 This is easily seen to be a split along a line in space. Lets do this

11

www.martinwerner.de

This is a typical linear neuron decision

12

www.martinwerner.de

However, XOR is impossible to represent with a single
neuron

0

1

0 1

There is no line that separates
the two colors!

13

www.martinwerner.de

Solution: Add multiple layers (MLP)

x

y

a

b

o

This architecture has an
bias term for all hidden
nodes (a) and the output
node which is hidden.

That is, there are nine
weights!

Each of the early neurons
decides
a) Above the line
b) Below the line

The last neuron calculates A
AND B, which is easily
possible !

0

1

0 1

a

B

Assignment: Find a set of weights for the network to model XOR

14

www.martinwerner.de

The first scientific! AI winter
(the term AI winter is used for periods of cut funding as well)

Now, for a long time, no real progress was made. People got frustrated,
left the field. The frustration points were:

 Finding optimal weights is NP-complete – exponential runtime

 While solving XOR is possible with a MLP, it is impossible to train,
because the expected output of the inner connections is unknown.

 Many people turned away from this part of machine learning

 Dates are difficult to assign as related machine learning techinques
are still evolving:

 Starts about the time that the implications of the unsolvability of
XOR for general intelligence become clear

 Challenge Problem has been identified: train MLP

 Ends about the time where multilayer perceptrons are
successfully trained

 Challenge Problem has been fully solved without
avoiding it.

15

www.martinwerner.de

The solution to the MLP problem

16

www.martinwerner.de

Back Propagation

 Where do the weights come from?

 Finding the optimal weights is NP-complete (that is, as hard as
the TSP; Blum and Rivest, 1992)

 Fortunately, we can find a sufficient set of weights through back
propagation (e.g., Rumelhart et al. (1985))

 First, we compare the output of a forward pass with the expected
value.

 Then, we slightly adjust each of the weights backwards in the network
by a very small amount.

 We do this over and over again (training)

 We do so, because the error function we chose is differentiable and
sufficiently smooth such that the local direction of error reduction is
sensible globally (which need not be the case)

17

www.martinwerner.de

Backpropagation Details

 Forward Pass

 All units within a layer have their values set in parallel

 Next layer only after first layer has completely been computed

 Layer Function needs to

 Have bounded derivative only

 However, linear aggregation of the input before applying one non-
linear function simplifies learning procedure

 Total Error Function

 𝐸 =
1

2
σ𝑐σ𝑗 𝑦𝑗,𝑐 − 𝑑𝑗,𝑐

2

 Idea: Use Gradient Decent of this with partial derivatives with
respect to each and every weight.

18

www.martinwerner.de

Gradient Decent

Let us fix a single case c. Then


𝜕𝐸

𝜕𝑦𝑗
= 𝑦𝑗 − 𝑑𝑗

Now, let 𝑥𝑗 denote the activity of a unit in the forward pass. Then use the

chain rule


𝜕𝐸

𝜕𝑥𝑗
=

𝜕𝐸

𝜕𝑦𝑗
⋅
𝜕𝑦𝑗

𝜕𝑥𝑗

Now, with an activity function of 𝑦𝑗 =
1

1+𝑒
−𝑥𝑗

we can calculate and

substitude the second factor:


𝜕𝐸

𝜕𝑥𝑗
==

𝜕𝐸

𝜕𝑦𝑗
⋅ 𝑦𝑗 1 − 𝑦𝑗

 This means, we know how the total input of node 𝑥𝑗 changes the total

error for this case. But as the total input is a linear sum of the inputs,
we can compute

19

www.martinwerner.de


𝜕𝐸

𝜕𝑤𝑖𝑗
=

𝜕𝐸

𝜕𝑥𝑗
⋅
𝜕𝑥𝑗

𝜕𝑤𝑖𝑗
=

𝜕𝐸

𝜕𝑥𝑗
⋅ 𝑦𝑖

 Und analog dazu können wir auch diese Ableitung für y ausrechnen:


𝜕𝐸

𝜕𝑦𝑖
=

𝜕𝐸

𝜕𝑥𝑗
⋅
𝜕𝑥𝑗

𝜕𝑦𝑖
=

𝜕𝐸

𝜕𝑥𝑗
⋅ wji

 Now, we have seen how to calculate
𝜕𝐸

𝜕𝑦
for any unit in the penultimate

layer when given information
𝜕𝐸

𝜕𝑦
from the last layer

 This can be iterated backwards such that the derivatives
𝜕𝐸

𝜕𝑤𝑗𝑖
become

known along the way.

 These are used for (stochastic) gradient descent!

20

www.martinwerner.de

Fully Explained

 It is a very good idea to spell out this for the XOR problem. You can
follow the following article (using different names than here)

 https://medium.com/@14prakash/back-propagation-is-very-
simple-who-made-it-complicated-97b794c97e5c

 One way of thinking about back-propagation is that it is a major
factorization of the derivative into things that we can calculate as
numbers!

𝑑𝐸

𝑑𝑤
=

𝑑𝐸

𝑑𝑦
⋅
𝑑𝑦

𝑑𝑥
⋅
𝑑𝑥

𝑑𝑤

https://medium.com/@14prakash/back-propagation-is-very-simple-who-made-it-complicated-97b794c97e5c

21

www.martinwerner.de

Now allows many architectures

 Classical Networks

 Input, a few hidden layers, an output

 Difficulty: expressivity (number of layers) vs. trainability (number
of parameters)

 Convolutional Neural Networks and Pooling

 Input an image, Layers are now calculating some local
convolution of the image and dimensionality is reduced by
pooling, that is taking only a subset of the data points.

 Less Weights (only once for the convolution kernel which is
swiped over the image, not for every pixel)

 Recurrent Networks

 They can have loops. That is the output of a layer serves as the
input of a previous layer. Sequences are typical examples, the
network can remember (learn to remember)

22

www.martinwerner.de

Second (scientific) AI Winter

 Now, Backpropagation can train deep networks and, therefore,
XOR,but

 Not enough processing power (no GPUs, for example)

 Lack of Datasets (big and annotated datasets, because in real-
world scenarios you would need those)

 Overfitting (mainly, because you need to choose a sufficiently
expressive architecture but don‘t have enough data to train)

 Vanishing Gradient Problem

 During learning, you multiply a lot of very small numbers
which eventually get too small for sensible learning on finite
accuracy machines

 People turned away, because practical examples of deep networks
were not brought to significant success, especially as other
techniques became very powerful including support vector machines

23

www.martinwerner.de

Breakthroughs

 Training tricks

 ImageNet Dataset (2009, 16 million annotated images)

 Visibility through ILSVRC (1 million images, 1,000 classes)

2013: AlexNet trained on ImageNet using two GPUs

 Dropout

 Rectified Linear Units (ReLU) instead of sigmoid or tanh activations

 Data Augmentation

24

www.martinwerner.de

In computer vision

 Errors drop significantly year by year

 Architectures get deeper and deeper

 Trainable with tricks

 Some results from the golden years of CNNs follow

25

www.martinwerner.de

ILSVC over the early years

26

www.martinwerner.de

2015

 In 2015, Microsoft Research Asia won with a 150 layer network

 Almost superhuman performance (3.5 % error, later even
improved)

 GoogLeNet 2014 had 22 layers

 Is the next AI winter just around the corner?

 We have been successful in image regognition, speech, and
translation.

 But we rely on excessive datasets that we cannot generate

 By abuse of language (AI vs. ML) also termed „narrow AI“

27

www.martinwerner.de
Martin Werner

www.martinwerner.de

Some Basic Deep Learning Architectures

28

www.martinwerner.de

Architectures

Perceptron (P)

29

www.martinwerner.de

Architectures

Feed Forward (FF)

30

www.martinwerner.de

Architectures

Deep Feed Forward (DFF)

31

www.martinwerner.de

Architectures

Recurrent Neural Network
(RNN)

Long / Short Term Memory
(LSTM)

Gated Recurrent Unit
(GRU)

32

www.martinwerner.de

Architectures

Auto Encoder (AE)

33

www.martinwerner.de

Architectures

Deep Convolutional Network (CNN)

34

www.martinwerner.de

Architectures

Deconvolutional Network (DN)

35

www.martinwerner.de

Architectures

Deep Residual Network (DRN)

36

www.martinwerner.de
Martin Werner

www.martinwerner.de

Dealing with Point Clouds

37

www.martinwerner.de

A first Success Story: PointNet

38

www.martinwerner.de

Why?

39

www.martinwerner.de

Classical Point Cloud Treatment

 Extract hand-crafted features (e.g., structure tensor + friends)

 Should be invariant for certain transformations

 Can be global or local

 Usually need a context definition (for pure 3D points)

 Including Deep Feed-Forward Architectures!

 Volumetric CNNs

 Step towards a voxelgrid and use (learned) 3D convolutions

 Multiview CNNs

 Render several perspective views of the point clouds and feed
them to a CNN

 Limited to aspects represented by 2D aspects (e.g., classification,
but not completion)

40

www.martinwerner.de

Central challenge

 Point Clouds are Unordered Collections of Points

 and there is no sensible ordering function

Model Functionalities Needed

 Classification outputs a score for each candidate class

 For Scene Understanding / Segmentation, the model outputs scores
for each point and each candidate class

41

www.martinwerner.de

A first glance at the architecture

42

www.martinwerner.de

PointNet Architecture

 Based on three main properties, assertions and their consequences

 The order of the points shall not matter

 Nearby things shall be able to interact with each other

 The system should become invariant under rigid
transformation including rotation, translation, and flip

43

www.martinwerner.de

Treating the Order of Points

 To make a model invariant under the order of input points can be
done basically in three ways:

 Sort input into a canonical order,

 However, no order exists that preserves data locality
completely

 Treat the input as a sequence and train with all permutations of
the input

 However, it has been shown that order matters still.

 Excessive training times (There are n! permutations)

 Use a simple, symmetric function to aggregate information from
each point

 Okay, lets go for it…

44

www.martinwerner.de

The symmetric function

 It would be easy to use addition or multiplication as they are perfectly
commutative. But more flexibility is needed and a trainable
(learnable) function is preferred.

 Therefore, f is a function mapping the point cloud to a single real
number (e.g., a point feature)

 But it is being factorized into a function g representing max-pooling
and h representing multilayer perceptron networks.

 Several functions h lead to several features now independent
from the point set ordering

45

www.martinwerner.de

Local and Global Information Treatment

 For now, we just transformed the whole point cloud into a single
feature vector 𝑓1…𝑓𝑘

 We can now just train any machine learning system like a SVM or
a MLP on this very result

 However, this can only rely on global information

 But, we will need a combination of local and global information

 This is done in the Segmentation Network

46

www.martinwerner.de

The Segmentation Network

 It concatenates 64 per point features with 1024 global features for a
matrix of nx1088 of features

 Thus, it can use local and global informamtion

 Experimentally shown that, for example, normals can be predicted
from this stage

47

www.martinwerner.de

Invariance w.r.t. rigid transformations

 The remaining piece is how to achieve invariance under rotation,
translation etc.

 Idea: Predict an affine transformation matrix (T-Net) and apply this
transformation to the input points

 These mini-networks have the same structure as the global
network: point independent feature extraction, max pooling, and
fully connected layers

 This can as well be applied again to the feature space.

 But beware, it is a large matrix and difficult to optimize

 Therefore, a constraint makes it almost orthogonal by adding to
the loss

48

www.martinwerner.de

Why PointNet? Because it looks nice and works in
practice

49

www.martinwerner.de

Yes, it works…

50

www.martinwerner.de

… but it is also theoretically sound!

Funktionen h und g existieren also tatsächlich für jede Fehlerschranke.
Allerdings ist das kein Ergebnis zur Trainierbarkeit. Nur die Existenz…

51

www.martinwerner.de
Martin Werner

www.martinwerner.de

PointNet++

52

www.martinwerner.de

Extension towards real-world problems

 PointNet uses a single Max-Pooling layer, which means that all
features are single-scale

 Point Clouds have varying sampling density, especially with fixed
sensors

 PointNet++ is based on a hierarchical grouping analyzing larger
and larger extracts of the point cloud

 Implemented as Compression: At each and every step, a point set
is abstracted to a point set with fewer points

 Three „layers“:

 Sampling, selects a set of points as centroids

 Grouping, assigns points to centroids

 PointNet++ uses a „mini“-PointNet to extract features

53

www.martinwerner.de

Only the ideas

 Sampling Layer

 Iterative Farthest Point Sampling (FPS)
Iteratively add the farthest point from the input to the current set

 Grouping Layer

 Assign some neighboring points using a

 ball query

 Pro: same scale, Con: different number of elements

 kNN

 Pro: same number of elements, Con: different scale

 Ball query preferred as PointNet can deal with varying inputs

 Many additional tricks

 See https://arxiv.org/pdf/1706.02413.pdf

https://arxiv.org/pdf/1706.02413.pdf

54

www.martinwerner.de
Martin Werner

www.martinwerner.de

And now? How would I?

55

www.martinwerner.de

Lets go for it

 Run a computer / container with tensorflow

 I am runnning NVIDIA‘s optimized tensorflow container (need an
account at NVIDIA container registry)

 Optimized by NVIDIA for DGX-1 Familiy

 On 8 interconnected V100 GPUs (256 GB total memory)

 Trains about 2 hours to 88.8 % accuracy on point cloud
classification for ModelNet 40 dataset

 Inside the container (or in the Dockerfile)

 apt-get install libhdf5-dev (for HDF5 file support)

 pip install h5py

 git clone https://github.com/charlesq34/pointnet

 python train.py

 Automatically downloads dataset

 Runs a few epoochs and outputs results

56

www.martinwerner.de

Hands-On

root@ede2a32eccac:/workspace/pointnet# python train.py

--2019-01-17 06:41:18--

https://shapenet.cs.stanford.edu/media/modelnet40_ply_hdf5_

2048.zip

Resolving shapenet.cs.stanford.edu

(shapenet.cs.stanford.edu)...

171.67.77.19

Connecting to shapenet.cs.stanford.edu

(shapenet.cs.stanford.edu)|171.67.77.19|:443... connected.

HTTP request sent, awaiting response... 200 OK

Length: 435212151 (415M) [application/zip] Saving to:

‘modelnet40_ply_hdf5_2048.zip’

modelnet40_ply_hdf5 100%[===================>] 415.05M

310KB/s in 22m 30s

https://shapenet.cs.stanford.edu/media/modelnet40_ply_hdf5_2048.zip

57

www.martinwerner.de

Results look like

[…]

eval mean loss: 0.549058

eval accuracy: 0.886769

eval avg class acc: 0.860618

**** EPOCH 249 ****

[…]

----1-----

eval mean loss: 0.546670

eval accuracy: 0.888393

eval avg class acc: 0.858817

(after 2 hours including data download on a single DGX-1)

58

www.martinwerner.de

Per-class performance and visualization of errors

$> pip install scipy

$> pip install image # for PIL

$> pip install matplotlib # for visualizations

$> python evaluate.py –visu

This now creates output of erroneous classifications in the

dump folder and gives per class performance results. Looks

like

airplane: 1.000

bathtub: 0.860

bed: 0.980

bench: 0.700

bookshelf: 0.900

bottle: 0.940

bowl: 0.950

car: 0.990

chair: 0.980

cone: 0.950

cup: 0.550

59

www.martinwerner.de

Thanks

