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A Short History of Deep Learning
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* Nothing of this is really new. It is an old and established discipline.

= The current hype comes from several factors

= Advances in computational performances (GPUs, TPUS)

Creation of Huge Datasets

(Smaller) Advances in Stochastic Gradient Decent

Novel Ideas about Regularization

Novel Ideas for Capacity (Weight) Reduction
= Convolutional Neural Networks
= But, Deep Learning is not very powerful per se:
= Energy Consumption
= Dataset Creation Cost
= Performance of the Deployed System
» Understandability and Certification of Systems
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Deep Learning Elements
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Neurons and Neural Networks
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The simplest Neuron is a linear one.

This means A

=  Activation Function is linear [ - ] Activation

= A bias term is added

= Then, we can write the output as
z w;x; +b
i=1.N

= For simplicity, the bias is often made
an artifical input to the system such
that it reads even simpler (w_0 =1, ©, QN

X _0=Db)
z Wi X;

i=0..N

Input 1 Input N
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» Lets assume two inputs to the neuron and f(x)=y the activation
function.

= Question: What can we represent in this way:

= Answer: Lets calculate a bit (with explicit bias)
Za)i+b = w1X1 + WX, + b
i

= Now, for binary classification, we need a simple decision rule. What
about (output > 0)

= Then, we can learn sets that have the structure
Za)i+b=a)1x1+a)2x2+b20
i

= This is easily seen to be a split along a line in space. Lets do this

10
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1= ‘ ‘ There is no line that separates
B the two colors!
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This architecture has an
bias term for all hidden
nodes (a) and the output
node which is hidden.

That is, there are nine
weights!

Each of the early neurons

decides

a) Above the line a
b) Below the line

The last neuron calculates A
AND B, which is easily
possible !

Assignment: Find a set of weights for the network to model XOR s
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Now, for a long time, no real progress was made. People got frustrated,
left the field. The frustration points were:

* Finding optimal weights is NP-complete — exponential runtime

= While solving XOR is possible with a MLP, it is impossible to train,
because the expected output of the inner connections is unknown.

= Many people turned away from this part of machine learning

= Dates are difficult to assign as related machine learning techingues
are still evolving:

= Starts about the time that the implications of the unsolvability of
XOR for general intelligence become clear

= Challenge Problem has been identified: train MLP

= Ends about the time where multilayer perceptrons are
successfully trained

= Challenge Problem has been fully solved without
avoiding it.
14
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Learning representations
by back-propagating errors

David E. Rumelhart*, Geoffrey E. Hintonf
& Ronald J. Williams*

* Institute for Cognitive Science, C-015, University of California,
San Diego, La Jolla, California 92093, USA

T Department of Computer Science, Carnegie-Mellon University,
Pittsburgh, Philadelphia 15213, USA

We describe a new learning procedure, back-propagation, for
networks of neurone-like units. The procedure repeatedly adjusts
the weights of the connections in the network so as to minimize a
measure of the difference between the actual output vector of the
net and the desired output vector. As a result of the weight

i DLR
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» Where do the weights come from?

» Finding the optimal weights is NP-complete (that is, as hard as
the TSP; Blum and Rivest, 1992)

= Fortunately, we can find a sufficient set of weights through back
propagation (e.g., Rumelhart et al. (1985))

= First, we compare the output of a forward pass with the expected
value.

= Then, we slightly adjust each of the weights backwards in the network
by a very small amount.

= We do this over and over again (training)

= \We do so, because the error function we chose is differentiable and
sufficiently smooth such that the local direction of error reduction is
sensible globally (which need not be the case)

16
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Forward Pass
= All units within a layer have their values set in parallel
= Next layer only after first layer has completely been computed

Layer Function needs to
= Have bounded derivative only

= However, linear aggregation of the input before applying one non-
linear function simplifies learning procedure

Total Error Function
1 2
" E= EZch(yj,c - dj,c)

ldea: Use Gradient Decent of this with partial derivatives with
respect to each and every weight.

17
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Let us fix a single case c. Then
OE
oy, - VT4
Now, let x; denote the activity of a unit in the forward pass. Then use the
chain rule

dE  O0E O0y;

ax]' ayj axj

Now, with an activity function of y; = ;_x] we can calculate and
1+e

substitude the second factor:

95 __ OE
ax]' ayj

= This means, we know how the total input of node x; changes the total
error for this case. But as the total input is a linear sum of the inputs,
we can compute

18
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0E _ O0E O0x; _ OE
- . - .yl

aWij 6xj aWij 6xj

Und analog dazu kénnen wir auch diese Ableitung flr y ausrechnen:

0E _ 0E 0xj  0E W
ayi - 6xj 6yi - 6xj )

Now, we have seen how to calculate % £ for any unit in the penultimate

layer when given information 2= % £ from the last layer

This can be iterated backwards such that the derivatives aaE become

Wji
known along the way.

These are used for (stochastic) gradient descent!

19
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It is a very good idea to spell out this for the XOR problem. You can
follow the following article (using different names than here)

= https://medium.com/@ 14prakash/back-propagation-is-very-
simple-who-made-it-complicated-97b794c97e5c¢c

One way of thinking about back-propagation is that it is a major
factorization of the derivative into things that we can calculate as
numbers!

dE dE dy dx

dw dy dx dw

20
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Classical Networks
* |nput, a few hidden layers, an output

= Difficulty: expressivity (number of layers) vs. trainability (number
of parameters)

Convolutional Neural Networks and Pooling

* |nput an image, Layers are now calculating some local
convolution of the image and dimensionality is reduced by
pooling, that is taking only a subset of the data points.

» Less Weights (only once for the convolution kernel which is
swiped over the image, not for every pixel)

Recurrent Networks

= They can have loops. That is the output of a layer serves as the
Input of a previous layer. Sequences are typical examples, the
network can remember (learn to remember)

21
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= Now, Backpropagation can train deep networks and, therefore,
XOR,but

= Not enough processing power (no GPUs, for example)

» Lack of Datasets (big and annotated datasets, because in real-
world scenarios you would need those)

» Qverfitting (mainly, because you need to choose a sufficiently
expressive architecture but don‘t have enough data to train)

= Vanishing Gradient Problem

= During learning, you multiply a lot of very small numbers
which eventually get too small for sensible learning on finite

accuracy machines

= People turned away, because practical examples of deep networks
were not brought to significant success, especially as other
techniques became very powerful including support vector machines

22
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* Training tricks
* ImageNet Dataset (2009, 16 million annotated images)

= Visibility through ILSVRC (1 million images, 1,000 classes)

2013: AlexNet trained on ImageNet using two GPUs

= Dropout

» Rectified Linear Units (ReLU) instead of sigmoid or tanh activations

= Data Augmentation

23
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= Errors drop significantly year by year ailaed
= Architectures get deeper and deeper il il
= Trainable with tricks i

= Some results from the golden years of CNNs follow

24
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CNN based, non-CNN based

25
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In 2015, Microsoft Research Asia won with a 150 layer network

* Almost superhuman performance (3.5 % error, later even
improved)

GooglLeNet 2014 had 22 layers

Is the next Al winter just around the corner?

= We have been successful in image regognition, speech, and
translation.

= But we rely on excessive datasets that we cannot generate
= By abuse of language (Al vs. ML) also termed ,,narrow Al*

DLR
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Some Basic Deep Learning Architectures




Architectures

Perceptron (P)
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Architectures

Feed Forward (FF)
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Architectures

Deep Feed Forward (DFF)

TnY
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Architectures
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Recurrent Neural Network
(RNN)

Long / Short Term Memory
(LSTM)

Gated Recurrent Unit
(GRU)

™

/{A\S

R
RO
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Architectures

Auto Encoder (AE)
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Architectures

Deep Convolutional Network (CNN)
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Deconvolutional Network (DN)
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Architectures

Deep Residual Network (DRN)
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Dealing with Point Clouds
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This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the version available on IEEE Xplore.

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

Charles R. Q1* Hao Su* Kaichun Mo Leonidas J. Guibas
Stanford University
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. ¢ table?
5*35’

car?

Classification

PointNet

a5y

1

Part Segmentation

Semantic Segmentation
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Classical Point Cloud Treatment
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Extract hand-crafted features (e.g., structure tensor + friends)
= Should be invariant for certain transformations
= Can be global or local
= Usually need a context definition (for pure 3D points)

* |ncluding Deep Feed-Forward Architectures!
Volumetric CNNs
= Step towards a voxelgrid and use (learned) 3D convolutions

Multiview CNNs

» Render several perspective views of the point clouds and feed
them to a CNN

» Limited to aspects represented by 2D aspects (e.g., classification,
but not completion)

M ==
Xy
loo 4 W DLR
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Point Clouds are Unordered Collections of Points

» and there is no sensible ordering function

Model Functionalities Needed

Classification outputs a score for each candidate class

For Scene Understanding / Segmentation, the model outputs scores
for each point and each candidate class

40
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Classification Network
input mlp (64,64) feature mlp (64,128,1024) max il .
42 transform :t;’: transform pool |74 (512,256.k)
‘; £ — & shared g ] | E shared nx1024 llbl;]_b
5 : global feature
£ i —- - —
R ] L et output scores
........... S e W peint features
. . §
—i | c
1088 & 8 |2
nx shared ~ shared E =
multiply ———"l_l_‘—' = _.'_I_)_. g
] mlp (512,256,128) mlp (128,m)
Segmentation Network
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= Based on three main properties, assertions and their consequences
» The order of the points shall not matter
= Nearby things shall be able to interact with each other

» The system should become invariant under rigid
transformation including rotation, translation, and flip

42
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* To make a model invariant under the order of input points can be
done basically in three ways:

= Sortinputinto a canonical order,

= However, no order exists that preserves data locality
completely

= Treat the input as a sequence and train with all permutations of
the input

= However, it has been shown that order matters still.
= EXcessive training times (There are n! permutations)

» Use asimple, symmetric function to aggregate information from
each point

= Okay, lets go for it...

43
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* |t would be easy to use addition or multiplication as they are perfectly
commutative. But more flexibility is needed and a trainable
(learnable) function is preferred.

f({il?l,...,:]?n})ﬁg(h(ﬂ?l),...,h(ﬂﬂn)), (1)

where [ N R, h : RYN — RX and g
RK X - X RKJ — R 1s a symmetric function.

'
n

= Therefore, fis a function mapping the point cloud to a single real
number (e.g., a point feature)

= Butitis being factorized into a function g representing max-pooling
and h representing multilayer perceptron networks.

» Several functions h lead to several features now independent
from the point set ordering

44




Local and Global Information Treatment

For now, we just transformed the whole point cloud into a single
feature vector f; ...

fr

= We can now just train any machine learning system like a SVM or

a MLP on this very result

WWW.martinwerner. de

ICAML 4#7

= However, this can only rely on global information

But, we will need a combination of local and global information

This is done in the Segmentation Network

Classzf cation Network

nx3

transform

input

mdlrlx
mulnply

mlp (64,64)

feature mlp (64,128,1024) max mlp
transform — pool 1024 (512,256,k)
< <t
T L 3 Shaired ST I Y e——
= = | global feature
— ’ L]
..................................................................................................... ...zl Outputscores
B ST ”pomt features o
64x64 —
) transform : — . — =
mate n|x 1088 shared E shared =
e (B ] o
mlp (512,256,128) mlp (128,m)
Segmentatzon Network
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Classification Network
input mlp (64,64) feature mlp (64,128,1024) max mlp
] —]
E transform . transform — pool 1024 (512,256,k)
1 [an} [a8}
2 global feature
i — —C_— —
e, e <O output scores
e l ............... ‘ e e s VT pointfeatures ...........................
Ix3 64x64 =
) transform | {ransform : - [e%e) g
—— —— n|x 1088 shared % shared &
P N P R
. mlp (512,256,128) mlp (128,m)

Segmentation Network

* |t concatenates 64 per point features with 1024 global features for a

matrix of nx1088 of features
= Thus, it can use local and global informamtion

= Experimentally shown that, for example, normals can be predicted

from this stage

i DLR
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* The remaining piece is how to achieve invariance under rotation,
translation etc.

» |dea: Predict an affine transformation matrix (T-Net) and apply this
transformation to the input points

» These mini-networks have the same structure as the global
network: point independent feature extraction, max pooling, and
fully connected layers

= This can as well be applied again to the feature space.
= But beware, it is a large matrix and difficult to optimize

» Therefore, a constraint makes it almost orthogonal by adding to
the loss

*reg HI AAT”F

DLR
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Why PointNet? Because it looks nice and works in
practice
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' table

.‘H‘l 'E]
TR
l.‘
motorbike k '. guitar

Partial Inputs Complete Inputs

Figure 3. Qualitative results for part segmentation. We
visualize the CAD part segmentation results across all 16 object
categories. We show both results for partial simulated Kinect scans
(left block) and complete ShapeNet CAD models (right block).
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... but it is also theoretically sound! “‘I_f:z ICAML

www.martinwerner.de

Theorem 1 Suppose f : X — R is a continuous
set function w.r.t Hausdorff distance dg(-,-). Ve >
0, 3 a continuous function h and a symmetric function
g(x1,...,xy) = v o MAX, such that for any S € X,

T, ES

|f<S) _ (MAX{h(sm}) 1 2:

where x4, ...,x, is the full list of elements in S ordered
arbitrarily, vy is a continuous function, and MAX is a vector
max operator that takes n vectors as input and returns a
new vector of the element-wise maximum.

Funktionen h und g existieren also tatsachlich fiir jede Fehlerschranke.
Allerdings ist das kein Ergebnis zur Trainierbarkeit. Nur die Existenz...
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PointNet++
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= PointNet uses a single Max-Pooling layer, which means that all
features are single-scale

= Point Clouds have varying sampling density, especially with fixed
sensors

= PointNet++ is based on a hierarchical grouping analyzing larger
and larger extracts of the point cloud

= |Implemented as Compression: At each and every step, a point set
IS abstracted to a point set with fewer points

* Three ,layers™:
= Sampling, selects a set of points as centroids
= Grouping, assigns points to centroids
= PointNet++ uses a ,,mini“-PointNet to extract features

52
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Sampling Layer

» |terative Farthest Point Sampling (FPS)
Iteratively add the farthest point from the input to the current set

Grouping Layer
= Assign some neighboring points using a

= pall query
= Pro: same scale, Con: different number of elements

= kNN
= Pro: same number of elements, Con: different scale

= Ball query preferred as PointNet can deal with varying inputs

Many additional tricks
= See https://arxiv.org/pdf/1706.02413.pdf
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Run a computer / container with tensorflow

= | am runnning NVIDIA's optimized tensorflow container (need an
account at NVIDIA container registry)

= Optimized by NVIDIA for DGX-1 Familiy
= On 8 interconnected V100 GPUs (256 GB total memory)

= Trains about 2 hours to 88.8 % accuracy on point cloud
classification for ModelNet 40 dataset

Inside the container (or in the Dockerfile)
= apt-get install libhdf5-dev (for HDF5 file support)
= pip install h5py
= git clone https://github.com/charlesqg34/pointnet
= python train.py
= Automatically downloads dataset
= Runs a few epoochs and outputs results
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root@ede2a32eccac:/workspace/pointnet# python train.py
--2019-01-17 06:41:18--
https://shapenet.cs.stanford.edu/media/modelnet40 ply hdf5
2048.z1ip

Resolving shapenet.cs.stanford.edu
(shapenet.cs.stanford.edu) ...

171.67.77.19

Connecting to shapenet.cs.stanford.edu
(shapenet.cs.stanford.edu) |171.67.77.19|:443... connected.
HTTP request sent, awaliting response... 200 OK

Length: 435212151 (415M) [application/zip] Saving to:
‘modelnet40 ply hdf5 2048.zip’

modelnet40 ply hdf5 100% [===================>] 415.05M
310KRBR/s in 22m 30s
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Results look like
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[...]

eval mean loss:

eval accuracy:
eval avg class
**x*x EPOCH 249

_ ] —-——-——

eval mean loss:

eval accuracy:
eval avg class

(after 2 hours

0.549058
0.886769
acc: 0.800018

* Kk kK

0.546670
0.888393
acc: 0.858817

including data download on a single DGX-1)

i DLR
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Per-class performance and visualization of errors

S>
S>
S>
S>

This now creates output of erroneous classifications in the
dump folder and gives per class performance results.

11

pip install scipy

pip install image # for PIL
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pip install matplotlib # for wvisualizations

python evaluate.py —-visu

ke

airplane:
bathtub:
bed:
bench:
bookshelf:
bottle:
bowl:
car:
chair:
cone:
cup:

O O O OO oo oo o

.000
. 860
. 980
. 700
. 900
.940
. 950
. 990
. 980
. 950
.550

Looks

i DLR
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Thanks
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